Расчет водяного теплого пола , онлайн калькулятор теплопотери

Теплотехнический расчет онлайн (обзор калькулятора)

Теплотехнический расчет можно сделать в Интернете онлайн. Неплохим, как на мое усмотрение являться сервис: rascheta.net. Давайте вкратце рассмотрим, как с ним работать.

Перейдя на сайт онлайн калькулятора, первым делом нужно выбрать нормативы по которым будет производится расчет. Я выбираю свод правил от 2012 года, так как это более новый документ.

Дальше нужно указать регион в котором будет строятся объект. Если нет Вашего города выбирайте ближайший большой город. После этого указываем тип зданий и помещений. Скорей всего Вы будете рассчитывать жилое здание, но можно выбрать общественные, административные, производственные и другие. И последнее, что нужно выбрать — вид ограждающей конструкции (стены, перекрытия, покрытия).

Расчетную среднюю температуру, относительную влажность и коэффициент теплотехнической однородности оставляем такими же, если не знаете как их изменять.

В опциях расчета устанавливаем все две галочки, кроме первой.

В таблице указываем пирог стены начиная снаружи — выбираем материал и его толщину. На этом собственно весь расчет и закончен. Под таблицей будет результат расчета. Если какое-то из условий не выполняется меняем толщину материала или же сам материал, пока данные не будут соответствовать нормативным документам.

Если Вы желаете посмотреть алгоритм расчета, то нажимаем на кнопку «Отчет» внизу страницы сайта.

Небольшой экскурс в физику явления

Точка росы – это температура воздуха, при которой излишки содержащейся в нем влаги выпадают в виде конденсата. Почему ее становится слишком много? Дело в том, что теплый воздух удерживает большое количество водяных паров, холодный – гораздо меньше. Именно эта разница при перепаде температур образует конденсат. Примером явления служат капли воды на холодных водопроводных трубах или окнах, туман.

Что еще нужно знать про точку росы:

  • Чем выше влажность, тем она ближе к температуре воздуха, и наоборот.
  • Ее значение не может быть выше температуры воздуха.
  • Конденсат всегда появляется на холодных поверхностях. Это объясняется тем, что теплый воздух рядом с ними охлаждается, и его влажность снижается.

Единица измерения точки выпадения конденсата – градусы Цельсия.

Что такое теплотехнический расчет?

Теплотехнический расчет выполняют для того, чтобы подобрать толщину и материал ограждающих конструкций и привести здание в соответствие нормам тепловой защиты. Основным нормативным документом, регламентирующим способность конструкции сопротивляться теплопередаче, является СНиП 23-02-2003 «Тепловая защита зданий».

Основным показателем ограждающей поверхности с точки зрения теплозащиты стало приведенное сопротивление теплопередаче. Это величина, учитывающая теплозащитные характеристики всех слоев конструкции, учитывая мостики холода.

Подробный и грамотный теплотехнический расчет — достаточно трудоемок. При возведении частных домов, собственники стараются учесть прочностные характеристики материалов, часто забывая о сохранении тепла. Это может привести к довольно плачевным последствиям.

Программа «Теремок»

Для выполнения расчета с помощью персонального компьютера специалисты часто используют программу для теплотехнического расчета «Теремок». Она существует в онлайн-варианте и как приложение для оперативных систем.

Программа производит вычисления на основе всех необходимых нормативных документов. Работа с приложением предельно проста. Оно позволяет выполнять работу в двух режимах:

  • расчет необходимого слоя утеплителя;
  • проверка уже продуманной конструкции.

В базе данных имеются все необходимые характеристики для населенных пунктов нашей страны, достаточно лишь выбрать нужный. Также необходимо выбрать тип конструкции: наружная стена, мансардная кровля, перекрытие над холодным подвалом или чердачное.

При нажатии кнопки продолжения работы появляется новое окно, позволяющее «собрать» конструкцию. Многие материалы имеются в памяти программы. Они подразделены на три группы для удобства поиска: конструкционные, теплоизоляционные и теплоизоляционно-конструкционные. Нужно задать лишь толщину слоя, теплопроводность программа укажет сама.

При отсутствии необходимых материалов их можно добавить самостоятельно, зная теплопроводность.

Перед тем как производить вычисления, необходимо выбрать тип расчета над табличкой с конструкцией стены. В зависимости от этого программа выдаст либо толщину утеплителя, либо сообщит о соответствии ограждающей конструкции нормам. После завершения вычислений, можно сформировать отчет в текстовом формате.

«Теремок» очень удобен для пользования и с ним способен разобраться даже человек без технического образования. Специалистам же он значительно сокращает время на вычисления и оформление отчета в электронном виде.

Главным достоинством программы является тот факт, что она способна вычислить толщину утепления не только наружной стены, но и любой конструкции. Каждый из расчетов имеет свои особенности, и непрофессионалу довольно сложно разобраться во всех. Для строительства частного дома достаточно освоить данное приложение, и не придется вникать во все сложности. Расчет и проверка всех ограждающих поверхностей займет не более 10 минут.

Варианты расположения проблемных зон

Точка росы имеет свойство смещаться, однако чаще всего выделяют три зоны ее расположения:

  • Ближе к наружной поверхности стены. Такой вариант имеет место, если стена не утеплена. Появление проблемной зоны возможно также при наружном утеплении недостаточной толщины.
  • Ближе к внутренней поверхности стены. При отсутствии утепления конденсат в этом месте легко образуется в период похолодания. Внутреннее утепление смещает участок конденсатообразования в область между поверхностью стены и утеплителем. При наружном утеплении это явление встречается редко, если все расчеты были выполнены правильно.
  • В толще утеплителя. Для наружной теплоизоляции это оптимальный вариант. При внутреннем утеплении велик риск появления со стороны комнаты плесени и, как следствие, нарушения микроклимата.

Обратите внимание! На образование конденсата в стене влияет не только температурно-влажностный режим со стороны улицы и помещения. Определяющими факторами являются также толщина конструкции, коэффициент теплопроводности применяемых материалов

Разновидности дёрена, которые растут в моем саду

Кизил обыкновенный

Первый — это многим хорошо известный кизил обыкновенный, или мужской (Cornus mas). Дерево или кустарник, который зацветает одним из первых. Ветви буквально облеплены ярко-жёлтыми цветами, что ранней весной смотрится декоративно и свежо.

Конечно, кизил мы ценим, в первую очередь, за ягоды, которые созревают осенью. Сортов выведено множество — с крупными, мелкими, продолговатыми, грушевидными и даже жёлтыми плодами. Они представляют интерес и для кулинаров, и для народной медицины.

Хотите верьте, хотите нет, но если в сезон съесть определённое количество плодов кизила вместе с косточками, то можно на долгий период избавиться от такой напасти, как геморрой.

Осенью листья дёрена красного (Cornus sanguinea) краснеют, а на ветвях висят чёрные горошинки ягод. flamedance

Дёрен красный

Второй свой дёрен я просто выкопал маленьким саженцем в местной лесополосе, скорее всего это дёрен красный (Cornus sanguinea). Для чего он мне? Это кустарник с очень густой кроной, способный вырасти до четырёх метров в высоту и ширину. Великолепная ширма, скрывающая соседский туалет.

При этом осенью его листья становятся кроваво-красными, а на ветвях висят чёрные горошинки ягод. Прелесть, а не кустарник! Абсолютно неприхотлив и хорошо выносит тень, ведь и растёт он в лесу под прикрытием высоких деревьев.

Дёрен белый (Cornus alba) ‘Sibirica Variegata’ по центру и дёрен ‘Aurea Elegantissima’ по бокам. lacroixx

Дёрен белый

Третий — мой любимчик — дёрен белый (Cornus alba), сорт ‘Sibirica Variegata‘. Тут вообще всё прекрасно! Раскидистый кустарник, который может вырасти до 2 м высотой. Летом светло-зелёные листья с широким белым окаймлением и узором к осени заметно краснеют. И всю зиму — ярко-красные (кораллового) цвета прутья молодых побегов.

Дёрен ‘Aurea Elegantissima’

Очень на него похож мой четвертый дёрен, это сорт ‘Aurea Elegantissima‘. Но у него белое окаймление и разводы на листьях изменены на жёлтый цвет, это, как принято говорить, желто-пестрая форма.

Дёрен отпрысковый

Ну, и недавнее приобретение — дёрен отпрысковый (Cornus sericea), сорт ‘Flaviramea’. Его особенность в ярко-зелёных листьях летом, которые осенью приобретают красивый красный оттенок, ну и, конечно, в молодых побегах ярко-жёлтого, фактически лимонного цвета.

Если первые две разновидности (кизил обыкновенный и дёрен красный) несут в моём саду чисто функциональную нагрузку, прикрыть и накормить (вылечить), то три последних выполняют эстетическую задачу – ублажают мой взор. Вот об этом стоит рассказать подробнее.

Есть у меня в планах и ещё два дёрена, это роскошно цветущий дёрен коуза (Cornus kousa) и дёрен красный сорт ‘Midwinter fire‘. Побеги последнего, действительно, как огонь — меняют цвет от жёлтого внизу до ярко-красного на кончиках.

У дёрена ‘Aurea Elegantissima’ окаймление и разводы на листьях жёлтого цвета. Baumschule HorstmannОдна из особенностей дёрена отпрыскового ‘Flaviramea’ — молодые побеги ярко-жёлтого, фактически лимонного цвета. Plantaholic SheilaРоскошно цветущий дёрен коуза (Сornus kousa). Liliana Puyo

Влияние воздушного зазора на теплозащитные характеристики

При устройстве стены, защищенной плитным утеплителем возможно устройство вентилируемой прослойки. Она позволяет отводить конденсат от материала и предотвращать его намокание. Минимальная толщина зазора 1 сантиметр. Это пространство не замкнуто и имеет непосредственное сообщение с наружным воздухом.

При наличии воздушно-вентилируемой прослойки в расчете учитываются только те слои, которые находятся до нее со стороны теплого воздуха. Например, пирог стены состоит из штукатурки, внутренней кладки, утеплителя, воздушной прослойки и наружной кладки. В расчет принимаются только штукатурка, внутренняя кладка и утеплитель. Наружный слой кладки идет после вентзазора, поэтому не учитывается. В данном случае наружная кладка выполняет лишь эстетическую функцию и защищает утеплитель от внешних воздействий.

ТРАНСПОРТ ДЛЯ ТЕПЛА

Первый вопрос: какой теплогенератор лучше? Он решается просто. Если есть природный газ, тогда газовый отопительный котёл, если нет газа, — значит, нагрев воздуха электрическими конвекторами и инфракрасными обогревателями. Ничего нет — солнечные коллекторы, солнечные батареи и т.д.

Второй вопрос: какую систему для транспортировки тепла следует использовать? Специалисты не могут прийти к единому мнению по вопросу, какой вид отопления (как транспорт) в доме лучше — водяной или воздушный.

КАК СЭКОНОМИТЬ НА КОМПЛЕКСЕ «ОТОПЛЕНИЕ-ВЕНТИЛЯЦИЯ»?

Один из вариантов — установить приточно-вытяжную установку с рекуперацией тепла и влажности, развести по дому систему подающих и вытяжных воздуховодов. По вытяжным (возвратным) воздуховодам «отработанный» воздух возвращается в рекуператор, подогревает (или охлаждает) приточный воздух и выбрасывается в атмосферу. Поступающий воздух очищается, подогревается (или охлаждается) до температуры, которая позволяет компенсировать теплопо-тери (или теплоизбытки) здания. Полная сменяемость воздуха происходит за час-полтора, а при необходимости и быстрее. Фактически это так называемая прямоточная система. Эта схема широко используется в странах Западной Европы для отопления жилищ. В России её применяют в общественных зданиях (офисах, торговых центрах и т.д.), где

требуется высокая кратность воздухообмена. Но для жилых домов это разорительно, поскольку климат в России существенно более холодный, чем в Западной Европе и Америке. Можно поступить и по-другому. По системе возвратных воздуховодов внутренний воздух дома транспортировать в центр обработки воздуха. Там при необходимости его можно либо подогреть, либо охладить, а затем подмешать в него нужное количество очищенного от пыли и других загрязнителей свежего воздуха, если требуется, увлажнить или подсушить его, и уже такой подготовленный «коктейль» подавать обратно в дом по системе подающих воздуховодов. В отличие от прямоточной системы, где весь воздух свежий, в такой системе его подмешивается всего 10-15%, а остальной берётся из самого дома. Кратность прохода воздуха через центр обработки 2,5-3,5 раза в час. Такой способ обработки воздуха является стандартом в Северной Америке

(США, Канаде). Причём, приточно-вытяжной воздух системы вентиляции предварительно проходит через рекуператор. Кстати, за час подмес свежего воздуха по стандартам США и Канады составляет только 30%. Такого количества свежего воздуха достаточно для комфортного проживания людей в частном доме. Именно за подобного рода централизованной обработкой воздуха и закрепился сейчас в обиходе термин «воздушное отопление». В СНиП 41 -01-2003 «Отопление, вентиляция, кондиционирование» это называется «кондиционированием воздуха».

Полувековой опыт эксплуатации таких систем доказал, что этот способ применим к любым климатическим условиям и позволяет в 1,5 раза экономить энергоресурсы по сравнению с конвекционными системами, да и по сравнению с прямоточными системами он более экономичен.

Необходимые для расчета нормативные документы:

  • СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Актуализированная редакция от 2012 года.
  • СНиП 23-01-99* (СП 131.13330.2012). «Строительная климатология». Актуализированная редакция от 2012 года.
  • СП 23-101-2004. «Проектирование тепловой защиты зданий».
  • ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях».

Исходные данные для расчета:

  1. Определяем климатическую зону, в которой мы собираемся построить дом. Открываем СНиП 23-01-99*.»Строительная климатология», находим таблицу 1. В данной таблице находим свой город (или максимально близко расположенный от места строительства город), например, для строительства в деревне, расположенной возле г. Муром, мы возьмем показатели г. Мурома! из столбца 5 — «Температура воздуха наиболее холодной пятидневки, с обеспеченностью 0,92» — «-30°С»;
  2. Определяем продолжительность отопительного периода —  открываем таблицу 1 в СНиП 23-01-99* и в столбце 11 (со средней суточной температурой наружного воздуха 8°С) продолжительность равна zht = 214 сут;
  3. Определяем среднюю температуру наружного воздуха за отопительный период, для этого из той же таблицы 1 СНИП 23-01-99* выбираем в столбце 12 значение — tht = -4,0°С .
  4. Оптимальную температуру внутри помещения принимаем по таблице 1 в ГОСТ 30494-96 — tint= 20°С;

    Затем, нам необходимо определиться с конструктивом самой стены. Поскольку раньше строили дома из одного материала (кирпич, камень и т.п.) — стены были очень толстые и массивные. Но, с развитием технологий, у людей появились новые материалы, обладающие очень хорошими показателями теплопроводности, что позволило значительно сократить толщину стен из основного (несущего материала) добавлением теплоизолирующего слоя, таким образом появились многослойные стены.

    Основных слоев в многослойной стене минимум три:

  • 1 слой — несущая стена — её назначение передавать нагрузку от вышележащих конструкций на фундамент;
  • 2 слой — теплоизоляция — её назначение максимально задерживать тепло внутри дома;
  • 3 слой — декоративный и защитный — её назначение делать красивым фасад дома и одновременно защищать слой утеплителя от воздействия внешней среды (дождь, снег, ветер и т.п.);

Рассмотрим для нашего примера следующий состав стены:

  • 1 слой — несущую стену мы принимаем газобетонных блоков толщиной 400мм (принимаем конструктивно — с учетом того, что на неё будут опираться балки перекрытия);
  • 2 слой — выполняем из минераловатной плиты, её толщину мы и определим теплотехническим расчетом!
  • 3 слой — принимаем облицовочный силикатный кирпич, толщина слоя 120 мм;
  • 4 слой — поскольку изнутри наша стена будет покрыта слоем штукатурки из цементно-песчаного раствора, тоже включим её в расчет и назначим её толщину 20мм;

Точка росы в стене дома – почему ее важно знать

Большую часть года между температурно-влажностным режимом улицы и помещения есть существенная разница. Именно поэтому в толще стен с утеплителем нередко появляются участки конденсатообразования. При изменении погодных условий они сдвигаются ближе к наружной или внутренней поверхности стены. То есть, к более холодному или теплому участку.

Пример: температура воздуха стабильно равна 25°C, а влажность – 45%. В этом случае конденсат образуется на участке с температурой 12,2°C. При повышении влажности до 65% точка росы сдвигается на более теплый участок, где 18°C.

Почему так важно знать местонахождение точки выпадения конденсата? Потому что она определяет, какой именно слой стенового «пирога» подвергается разрушающему воздействию влаги. Самый плохой вариант – когда намокает утеплитель

При таких условиях большинство теплоизоляционных материалов теряет свои свойства. Они деформируются, пропускают холодный воздух, гниют, теряют упругость. Особенно подвержена этим процессам минеральная вата.

Рекомендации по применению

Применяя тот или иной вид муфт, хочется дать несколько советов где и как лучше всего их использовать. Например, американка с уплотнительным резиновым кольцом особенно часто используется при ремонте или монтаже стояка. К примеру, полипропиленовая сороковая труба и высота от потолка до пола 2,5 метра, на трубе сороковке тяжело сделать изгиб так, чтобы было удобно припаять. Чтобы избежать подобных сложностей используется американка с уплотнительным резиновым кольцом. Получается ровное, аккуратно сделанное и герметичное соединение, которое при необходимости возможно разобрать.

Такое соединение достаточно надежно, но если через определенный период, примерно через один год, его требуется разобрать, тогда перед тем, как заново его монтировать, необходимо произвести замену уплотнительного кольца. В противном случае возможно американка будет давать течь. Поэтому рекомендуется произвести замену резинового уплотнителя. При монтаже стояка с использованием полипропиленовых труб, берем из такого же полипропиленового материала муфту американку. Данное соединение можно использовать практически везде. В том числе при навесе водонагревателя бойлера, в основном используются американки с резиновым уплотнительным кольцом. Это компактно, удобно и недорого.

Если же необходимо закрепить змеевик полотенцесушителя, тогда используется конусная американка, так как в этих случаях такие муфты гораздо надежнее. В виду того, что подача воды в многоэтажных домах подается под давлением около 7 кг, чтобы избежать таких сложностей с уплотнительными резиновыми элементами, лучше использовать конусную муфту американку. Несмотря на то, что данное быстрое разъемное соединение с накидной гайкой довольно эффективное, при монтаже рекомендуется на соединение подматывать фум -ленту. Зачем это надо? Иногда сложно затянуть муфту американку, чтобы она полностью не пропускала воду. Редко, но иногда такое случается. В основном все просто: установили, затянули и все отлично работает. Но иногда попадается муфта с не очень точным конусом.

Выходом из этой ситуации может служить герметизирующая фум-лента. Дальше все просто: соединить конус в конус, состыковать и затянуть. Здесь фум- лента компенсирует незначительный перекос, если он имеется в муфте американке. Поэтому при монтировании соединения желательно сразу намотать фум -ленту. Случается, они бывают очень кривыми, и этим методом перекос нельзя устранить. В таком случае лучший вариант — это заменить муфту в магазине по гарантии на качественную.

Особенности утепления снаружи

Достоинствами такой процедуры являются:

  1. Доступность. Наружные работы не ограничены размерами помещения.
  2. Отсутствие необходимости перемещения мебели. При этом не только не нарушается интерьер, но и не снимается отделочный слой стены.
  3. За счет утепления не скрадывается полезная площадь жилого пространства.
  4. Защита поверхностей от перепадов температур.
  5. Отсутствие увеличения нагрузки на фундамент и несущую конструкцию.
  6. Уникальная эстетика отделки снаружи.

Однако все эти преимущества достигаются только в случае, когда грамотно подобран утепляющий материал, качественно установлен и рассчитан.

Факторы, влияющие на качество наружного утепления:

  • вид материала, используемого в качестве утеплителя;
  • состояние поверхности;
  • общее состояние каркаса дома;
  • назначение помещения;
  • климат, в котором располагается здание (температурный режим, уровень осадков).

Технологии утепления стен снаружи

Бескаркасный монтаж пенопласта – это технология с применением клея для закрепления листов на стене. Однако при таком монтаже есть вероятность образования полос холода в местах стыков полотен материала. Избежать этого поможет укладка двойного слоя материала. Фиксируются листы пластиковыми дюбелями, а сверху закрываются полимерной сеткой.

Каркасный метод более трудоемкий, поэтому применяется редко. Обычно он актуален при последующей отделке сайдингом или вагонкой. Если необходимо определить точку росы, калькулятор может не понадобиться, но такие материалы часто ее перемещают.

Процесс утепления состоит из следующих этапов:

  1. Для начала поверхность очищается до основного слоя.
  2. Затем она грунтуется и выравнивается.
  3. Следующим этапом является возведение каркаса из металлопрофиля.
  4. Когда каркас готов, нужно переходить к заполнению пространства между профилями теплоизолирующим материалом.
  5. Далее проводится установка отделочного слоя и финишная обработка стены.

Наружное утепление позволяет сохранить до 25% энергии.

Особенности правильного утепления помещения изнутри

Утепление стен изнутри имеет ряд преимуществ:

  • невысокая стоимость;
  • возможность проводить работы в любое время года;
  • возможность частичного утепления;
  • звукоизоляция;
  • возможность проведения работ самостоятельно.

Зачем выполняется расчет?

Перед началом строительства заказчик может выбрать, будет он учитывать теплотехнические характеристики или обеспечит только прочность и устойчивость конструкций.

Расходы на утепление совершенно точно увеличат смету на возведение здания, но снизят затраты на дальнейшую эксплуатацию. Индивидуальные дома строят на десятки лет, возможно, они будут служить и следующим поколениям. За это время затраты на эффективный утеплитель окупятся несколько раз.

Что получает владелец при правильном выполнении расчетов:

  • Экономия на отоплении помещений. Тепловые потери здания снижаются, соответственно, уменьшится количество секций радиатора при классической системе отопления и мощность системы теплых полов. В зависимости от способа нагрева, затраты владельца на электричество, газ или горячую воду становятся меньше;
  • Экономия на ремонте. При правильном утеплении в помещении создается комфортный микроклимат, на стенах не образуется конденсат, и не появляются опасные для человека микроорганизмы. Наличие на поверхности грибка или плесени требует проведения ремонта, причем простой косметический не принесет никаких результатов и проблема возникнет вновь;
  • Безопасность для жильцов. Здесь, также как и в предыдущем пункте, речь идет о сырости, плесени и грибке, которые могут вызывать различные болезни у постоянно пребывающих в помещении людей;
  • Бережное отношение к окружающей среде. На планете дефицит ресурсов, поэтому уменьшение потребления электроэнергии или голубого топлива благоприятно влияет на экологическую обстановку.

Теплотехнический расчет.

Приступаем непосредственно к теплотехническому расчету, а именно — нам необходимо подобрать толщину 2-го слоя (утеплителя) исходя из условий места строительства.
В первую очередь — определяем норму тепловой защиты из условий соблюдения санитарных норм.
Согласно формулы 3 из СНиП 23-02-2003 «Тепловая защита зданий» рассчитывается нормативное (или другими словами максимально допустимое) сопротивление теплопередачи, формула выгладит так:

где:
n = 1 — коэффициент, принятый по таблице 6, из СНиП 23-02-2003 «Тепловая защита зданий» для наружной стены (впрочем, в последнем актуализированном СП данный коэффициент упразднили!);

tint = 20°С — оптимальная температура в помещении, из исходных данных;

text = -30°С — температура наиболее холодной пятидневки, значение из исходных данных;

Δtn = 4°С — данный показатель принимается по таблице 5, из СНиП 23-02-2003 «Тепловая защита зданий» он нормирует температурный перепад между температурой воздуха внутри помещения и температурой внутренней поверхности ограждающей конструкции (стены);

αint = 8,7 Вт/(м2×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 из СНиП 23-02-2003 «Тепловая защита зданий» для наружных стен.

Выполняем расчет:

получили сопротивление теплопередачи из санитарных норм Rreq = 1.437 м2*℃/Вт;

Во вторую очередь, определяем сопротивление теплопередачи из условий энергосбережения.

Определяем градусо-сутки отопительного периода, для этого воспользуемся формулой, согласно пункта 5.3 в СНиП 23-02-2003″Тепловая защита зданий»:

Dd = (tint — tht)zht = (20 + 4,0)*214 = 5136°С×сут

Примечание: градусо-сутки ещё имеют сокращенное обозначение — ГСОП.

Далее, согласно СНиП 23-02-2003 «Тепловая защита зданий» в зависимости от градусо-суток района строительства, рассчитываем нормативное значение приведенного сопротивления теплопередаче по формуле:

Rreq= a*Dd + b = 0,00035 × 5136 + 1,4 = 3,1976м2×°С/Вт,

где: Dd — градусо-сутки отопительного периода в г. Муром,

a и b — коэффициенты, принимаемые по таблице 4, столбец 3, СНиП 23-02-2003 «Тепловая защита зданий» для стен жилого здания.
таким образом, мы получили второе значение сопротивления теплопередачи исходя из энергоэффективности Rreq = 3,198 м2*℃/Вт;

Для дальнейшего расчета стены, мы принимаем наибольшее значение из двух рассчитанных нами показателей Rreq (1,437 и 3,198), и обозначим его как Rтреб = 3,198 м2*℃/Вт;

Определение толщины утеплителя

Для каждого слоя нашей многослойной стены необходимо рассчитать термическое сопротивление по формуле:

где:
δi- толщина слоя, мм;
λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

Рассчитываем термическое сопротивление для каждого слоя
1 слой (газобетонные блоки): R1 = 0,4/0,29 = 0,116 м2×°С/Вт.
3 слой (облицовочный силикатный кирпич): R3 = 0,12/0,87 = 0,104 м2×°С/Вт.
4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала:

где:

Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;

Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности,

αext принимается по таблице 14 для наружных стен;

ΣRi = 0,116 + 0,104 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м2·°С/Вт

Толщина утеплителя равна:

где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм:

где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м2·°С/Вт.

Из полученного результата можно сделать вывод, что

R0 = 3,343м2×°С/Вт > Rтр0 = 3,198м2×°С/Вт → следовательно, толщина утеплителя подобрана правильно.

Вот мы и выполнили теплотехнический расчет стены и нам известны толщины всех слоёв, входящих в её состав. Для того, чтобы долго не разбираться с нормативной документацией и самому считать на калькуляторе все эти сложные формулы, можно воспользоваться калькулятором «Теплотехнический расчет стены», где Вам достаточно просто выбрать исходные данные, а сам расчет произведется автоматически.

Выводим точку росы из дома

Если расположить слой утеплителя на наружной части стены, важный показатель переместиться в него. Тогда перепады температур будут не такими резкими, а потому внутренние поверхности не пострадают.

Чем толще ширина утеплителя, тем ниже риск повреждения внутренних поверхностей.

Как найти

При встрече холодного и теплого воздуха появляется конденсат, а сам процесс преобразования пара во влагу в таком случае получил название конденсации.

Что такое точка росы и где она размещается? Точка росы может располагаться на стене, либо в ее толще. Местоположение в стене зависит от таких факторов:

  1. Тип стены.
  2. Внутренний уровень температуры.
  3. Климат снаружи здания.
  4. Влажность.

На стене без утеплителя расположение может быть следующим:

  • в стене, ближе к наружной части. Стена внутри здания не становится влажной;
  • в толщине стены, смещенной к комнате. Стена без влаги, но при понижении температуры могут возникать места намокания;
  • на стене внутри помещения. Внутренняя сторона конструкции дома будет влажной в осенне-зимний период.

На стене, утепленной по всем правилам со стороны улицы, точка может перемещаться в зависимости от утеплителя:

  • если выбор сделан по всем правилам, то она расположена внутри утеплителя;
  • когда толщина слоя недостаточная, стена мокнет.

Расположение того, что называется точкой росы, в утепленной внутри стене сдвигается:

  • если она находится в середине стены, может отмечаться влажность при смене температурного режима;
  • если она расположилась под утеплителем, стена может намокать в зимний период.
  • если точка росы окажется в самой толще утеплителя, при низких температурах может намокать не только стена, но и сам утеплитель.

Поэтому перед утеплением необходимо учитывать различные вариации последствий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector