Теплопроводность воды

Содержание:

Лучшие бюджетные септики для дачи

«Виды теплопередачи: теплопроводность, конвекция, излучение»

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц

Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.  Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».

Следующая тема: «Количество теплоты. Удельная теплоёмкость».

Что влияет на способность пенополистирола проводить тепло

Чтобы наглядно понять, что такое теплопроводность, возьмем кусок материала метровой толщины и площадью один квадратный метр. Причем одну его сторону нагреваем, а вторую оставляем холодной. Разница этих температур должна быть десятикратной. Измерив количество теплоты, которое за одну секунду переходит на холодную сторону, получаем коэффициент теплопроводности.

Отчего же именно пенополистирол способен хорошо сохранять как тепло, так и холод? Оказывается, всё дело в его строении. Конструктивно данный материал состоит из множества герметичных многогранных ячеек, имеющих размер от 2 до 8 миллиметров. Внутри у них находится воздух – он составляет 98 процентов и служит великолепным теплоизолятором. На полистирол приходится 2% от объёма.А по массе полистирол составляет 100%, т.к. воздух, условно говоря, не имеет массы.

Надо заметить, что теплопроводность экструдированного пенополистирола остается неизменной по прошествии времени. Это выгодно отличает данный материал от других пенопластов, ячейки которых наполнены не воздухом, а иным газом. Ведь этот газ обладает способностью постепенно улетучиваться, а воздух так и остается внутри герметичных пенополистирольных ячеек.

Покупая пенопласт, мы обычно спрашиваем продавца о том, каково значение плотности данного материала. Ведь мы привыкли, что плотность и способность проводить тепло неразрывно связаны друг с другом. Существуют даже таблицы этой зависимости, с помощью которых можно выбрать подходящую марку утеплителя.

Плотность пенополистирола кг/м3 Теплопроводность Вт./МКв
10 0,044
15 0,038
20 0,035
25 0,034
30 0,033
35 0,032

Однако в нынешнее время придумали улучшенный утеплитель, в который введены графитовые добавки. Благодаря им коэффициент теплопроводности пенополистирола различной плотности остается неизменным. Его значение — от 0,03 до 0,033 ватта на метр на Кельвин. Так что теперь, приобретая современный улучшенный ЭППС, нет надобности проверять его плотность. 

Маркировка пенополистирола теплопроводность которого не зависит от плотности:

Марка пенополистирола Теплопроводность Вт./МКв
EPS 50 0.031 — 0.032
EPS 70 0.033 — 0.032
EPS 80 0.031
EPS 100 0.030 — 0.033
EPS 120 0.031
EPS 150 0.030 — 0.031
EPS 200 0.031

Таблица теплопроводности материалов на М-О

Магнезия в форме сегментов для изоляции труб 220…300 0.073…0.084
Мастика асфальтовая 2000 0.7
Маты, холсты базальтовые 25…80 0.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) 150 0.061 840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) 50…125 0.048…0.056 840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.038
Мел 1800…2800 0.8…2.2 800…880
Медь (ГОСТ 859-78) 8500 407 420
Миканит 2000…2200 0.21…0.41 250
Мипора 16…20 0.041 1420
Морозин 100…400 0.048…0.084
Мрамор (облицовка) 2800 2.9 880
Накипь котельная (богатая известью, при 100°С) 1000…2500 0.15…2.3
Накипь котельная (богатая силикатом, при 100°С) 300…1200 0.08…0.23
Настил палубный 630 0.21 1100
Найлон 0.53
Нейлон 1300 0.17…0.24 1600
Неопрен 0.21 1700
Опилки древесные 200…400 0.07…0.093

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

Влажность – злокачественный фактор, повышающий скорость прохождения тепла

Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.

«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Неорганические материалы и изделия волокнистые теплоизоляционные материалы

Минеральная вата

Любой волокнистый утеплитель, получаемый из минерального сырья ( мергелей, доломитов, базальтов и др.) Минеральная вата высокопористая (до 95% объема занимают воздушные пустоты), поэтому у нее высокие теплоизоляционные свойства. Вот эту схемка поможет Вам разобраться в названиях материалов:

Волокно, которое получают из расплава, скрепляется в изделие с помощью связующего, (чаще всего это фенолформальдегидная смола). Есть изделия, которые называются прошивные маты – в них материал зашивается в стеклоткань и прошивается нитками.

Таблица 1. Виды теплоизоляционных изделий и их характеристики

Минеральная вата занимает одно из первых мест среди теплоизоляции, связано это с доступностью сырья для ее производства, несложной технологией получения, и как следствие — доступной ценой. О ее теплопроводности сказано выше, отмечу следующие ее достоинства:

  • Не горит;
  • Мало гигроскопична ( при попадании влаги тут же ее отдает, главное — обеспечить вентиляцию);
  • Гасит шум;
  • Морозостойкая;
  • Стабильность физических и химических характеристик;
  • Длительный срок эксплуатации.

Недостатки:

  • При попадании влаги теряет теплоизолирующие свойства.
  • Требует пароизоляционной и гидроизоляционной пленки при монтаже.
  • Уступает по прочности (например, пеностеклу).

Маты и плиты из базальтовой ваты

• Высокие теплоизолирующие свойства;

• Выдерживает высокие температуры, не теряя теплоизолирующие свойства;

Базальтовая вата

Таблица 2. Применение базальтовой ваты и ценообразование

За основу брались средние цены на вату европейского производства.

Стекловата

Производят ее из волокна, которое получают из того же сырья, что и стекло (кварцевый песок, известь, сода).

Стекловата

Выпускают в виде рулонных материалов, плит и скорлуп (для трубной изоляции). В целом ее достоинства такие же (см. минеральная вата). Она прочнее базальтовой ваты, лучше гасит шум.

Недостаток температуростойкость стекловаты 450°С, ниже, чем у базальтовой (речь идет о самой вате, без связующего). Эта характеристика важна для технической изоляции.

Таблица 3. Характеристика стекловаты и ее ценообразование

За основу брались средние цены на стекловату европейского производства.

Пеностекло (ячеистое стекло)

Производят его путем спекания стеклянного порошка с газообразователями ( например известняком). Пористость материала 80-95%. Это обуславливает высокие теплоизоляционные свойства пеностекла.

Пеностекло

Достоинства пеностекла:

  • Очень прочный материал;
  • Водостойкий;
  • Несгораемый;
  • Морозостойкий;
  • Легкий при механической обработке, в него даже можно вбивать гвозди;
  • Срок его службы практически неограниче;
  • Его «не любят» грызуны
  • Оно биологически стойкое и химически нейтральное.

Паронепроницаемость пеностекла — так как оно не «дышит» , это нужно учитывать, при обустройстве вентиляции. Также его «минус» это цена, оно дорогое. Поэтому оно и применяется в основном на промышленных объектах для плоских кровель (там где нужна прочность, и где оправдываются денежные затраты на такую теплоизоляцию). Выпускают в виде блоков и плит.

Таблица 4. Характеристика пеностекла

Кроме перечисленных материалов, есть еще целый ряд материалов, которые также относят к данной группе материалов неорганических теплоизоляционных материалов.

Теплоизоляционные бетоны бывают: газонаполненные (пенобетон, ячеистый бетон, газобетон) и на основе легких заполнителей (керамзитобетон, перлитобетон, полистиролбетон и т.п.).

Засыпная теплоизоляция (керамзит, перлит, вермикулит ). Отличается высоким водопоглощением, неустойчива к вибрации, может дать усадку со временем, что приводит к образованию пустот, требует высоких затрат при монтаже. У нее есть и плюсы, например: керамзит обладает высоким уровнем морозоустойчивости и прочности. Стоимость керамзита — 350 грн/м3.

Полки для ванных комнат: виды, материалы и стилевое оформление

LiveInternetLiveInternet

Мы все знакомы с относительной теплопроводностью дерева. Вернее будет сказать, с его не-теплопроводностью, поскольку дерево знаменито своими качествами теплоизоляции, а не теплопроводности. Образ «тёплого» дерева вполне объясним с точки зрения теории теплопроводности. Ощущение теплоты или холода зависит не только от температуры предмета, к которому мы прикасаемся, но и от скорости, с которой он передаёт или отбирает тепло нашей кожи. К примеру, если вы касаетесь холодного металла, то он отбирает тепло в сотни раз быстрее, чем холодное дерево. Хотя их температура и одинакова, ваши ощущения таковы: дерево теплее. Именно поэтому в течение многих столетий дерево используют в качестве материала для изготовления ружейного ложа, сидений и рукояток инструмента. Сравнительные значения теплопроводности различных материалов приведены в таблице:

Приблизительные термические свойства различных материалов

Материал К* R**
Воздух 0.16 6.25
Вода 4 0.25
Лёд 15 0.07
Стекло 5 0.2
Кирпич 4.5 0.22
Бетон 7.5 0.13
Мрамор 17 0.06
Сталь 310 0.003
Алюминий 1400 0.0007
Теплоизоляция (стекловата, мин. вата, пенополиуретан, и т.д.) 0.2-0.3 3.3-5.0
Дерево (сухое, в направлении перпендикулярно волокну) 0.4-1.2 0.8-2.5

* К коэффициент теплопроводности (выраженный как количество BTU, проходящих через материал в час, на дюйм толщины, на квадратный фут поверхности, на разницу в градусах температуры по Фаренгейту между тёплой и холодной стороной.

** R =1/К тепловое сопротивление материала, представляет собой теплоизоляционное качество материала

Очевидно, что чем выше значение R, тем лучше теплоизоляционные свойства материала. Приведённые в таблице значения для дерева показывают разницу между свойствами различных пород в сухом виде. Вообще, теплопроводность дерева зависит от его плотности и уровня влажности следующим образом:

К = S ( 1,39 + 0.028 MC ) + 0.165

где К коэффициент теплопроводности в BTU/ft2/0F/hr/in., S плотность, а МС уровень влажности в %. Т.е. увеличение плотности и уровня влажности ведёт к повышению теплопроводности, или к потере теплоизоляционных качеств.

Для большинства хвойных пород, применяемых в строительстве, значение К будет равно или чуть меньше 1, а значение R чуть больше 1. Например, для еловой доски с плотностью 0.40 и средним уровнем влажности в 10 %,

К = 0.40 ( 1.39 + 0.028 х 10 ) + 0.165 = 0.833

Принимая во внимание критическое состояние наших энергетических ресурсов, понятно, что потеря тепла в зданиях и сооружениях серьёзная забота. Из данных, приведённых в таблице, отчётливо видно, что дерево лучший теплоизолятор, чем другие строительные материалы

Оно в семь раз эффективней бетона, в 300 раз эффективней стали и в 1400 раз эффективней алюминия той же толщины. Хотя материалы, производимые специально для теплоизоляции (стекловата, минеральная вата, пенополиуретановая пена и т.п.) и превосходят дерево по своим свойствам в три-четыре раза, во многих случаях, особенно там, где требуются прочность, красота и теплоизоляция, дерево остаётся приемлемым компромиссом и логическим выбором.

Значение К для воды составляет 4, а для льда 15, из чего можно сделать вывод, что для того, чтобы сохранить теплоизолирующий потенциал, дерево и другие материалы необходимо поддерживать в сухом состоянии. оригинал блога

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловой передачи, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана,
e{\displaystyle e} — заряд электрона,
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле

ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}

где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как

ϰ=ik3π32d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}

где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Теплотехнический расчет стен из различных материалов

Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор.

Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является «теплота» материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление

Второе становится особенно актуальным при отсутствии подведенного к дому газа

Второе становится особенно актуальным при отсутствии подведенного к дому газа

Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.

Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).

По существующим нормам (СП 50.13330.2012 Тепловая защита зданий.

Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного, допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.

В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.

Расчет необходимой толщины однослойной стены

В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.

Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт).

Допустимая — минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).

№ п/п Материал стены Теплопроводность, Вт/м·°C Толщина стены, мм
Требуемая Допустимая
1 Газобетонный блок 0,14 444 270
2 Керамзитобетонный блок 0,55 1745 1062
3 Керамический блок 0,16 508 309
4 Керамический блок (тёплый) 0,12 381 232
5 Кирпич (силикатный) 0,70 2221 1352

Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.

Расчет сопротивления теплопередачи стены

Ниже представлены значения сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен из газобетона, керамзитобетона, керамических блоков, кирпича, с отделкой штукатуркой и облицовочным кирпичом, утеплением и без. По цветной полосе можно сравнить между собой эти варианты. Полоса зеленого цвета означает, что стена соответствует нормативным требованиям по теплозащите, желтого — стена соответствует допустимым требованиям, красного — стена не соответствует требованиям

Стена из газобетонного блока

1 Газобетонный блок D600 (400 мм) 2,89 Вт/м·°C
2 Газобетонный блок D600 (300 мм) + утеплитель (100 мм) 4,59 Вт/м·°C
3 Газобетонный блок D600 (400 мм) + утеплитель (100 мм) 5,26 Вт/м·°C
4 Газобетонный блок D600 (300 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,20 Вт/м·°C
5 Газобетонный блок D600 (400 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,88 Вт/м·°C

Стена из керамзитобетонного блока

1 Керамзитобетонный блок (400 мм) + утеплитель (100 мм) 3,24 Вт/м·°C
2 Керамзитобетонный блок (400 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 1,38 Вт/м·°C
3 Керамзитобетонный блок (400 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 3,21 Вт/м·°C

Стена из керамического блока

1 Керамический блок (510 мм) 3,20 Вт/м·°C
2 Керамический блок тёплый (380 мм) 3,18 Вт/м·°C
3 Керамический блок (510 мм) + утеплитель (100 мм) 4,81 Вт/м·°C
4 Керамический блок (380 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,62 Вт/м·°C

Стена из силикатного кирпича

1 Кирпич (380 мм) + утеплитель (100 мм) 3,07 Вт/м·°C
2 Кирпич (510 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 1,38 Вт/м·°C
3 Кирпич (380 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 3,05 Вт/м·°C

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Материал Коэфф. тепл. Вт/(м2*К)
Алебастровые плиты 0,470
Алюминий 230,0
Асбест (шифер) 0,350
Асбест волокнистый 0,150
Асбестоцемент 1,760
Асбоцементные плиты 0,350
Асфальт 0,720
Асфальт в полах 0,800
Бакелит 0,230
Бетон на каменном щебне 1,300
Бетон на песке 0,700
Бетон пористый 1,400
Бетон сплошной 1,750
Бетон термоизоляционный 0,180
Битум 0,470
Бумага 0,140
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,100
Войлок шерстяной 0,045
Гипс строительный 0,350
Глинозем 2,330
Гравий (наполнитель) 0,930
Гранит, базальт 3,500
Грунт 10% воды 1,750
Грунт 20% воды 2,100
Грунт песчаный 1,160
Грунт сухой 0,400
Грунт утрамбованный 1,050
Гудрон 0,300
Древесина — доски 0,150
Древесина — фанера 0,150
Древесина твердых пород 0,200
Древесно-стружечная плита ДСП 0,200
Дюралюминий 160,0
Железобетон 1,700
Зола древесная 0,150
Известняк 1,700
Известь-песок раствор 0,870
Ипорка (вспененная смола) 0,038
Камень 1,400
Картон строительный многослойный 0,130
Каучук вспененный 0,030
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,200
Кирпич кремнеземный 0,150
Кирпич пустотелый 0,440
Кирпич силикатный 0,810
Кирпич сплошной 0,670
Кирпич шлаковый 0,580
Кремнезистые плиты 0,070
Латунь 110,0
Лед 0°С 2,210
Лед -20°С 2,440
Липа, береза, клен, дуб (15% влажности) 0,150
Медь 380,0
Мипора 0,085
Опилки — засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,190
Пенобетон 0,300
Пенопласт ПС-1 0,037
Пенопласт ПС-4 0,040
Пенопласт ПХВ-1 0,050
Пенопласт резопен ФРП 0,045
Пенополистирол ПС-Б 0,040
Пенополистирол ПС-БС 0,040
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,060
Пеностекло тяжелое 0,080
Пергамин 0,170
Перлит 0,050
Перлито-цементные плиты 0,080
Песок 0% влажности 0,330
Песок 10% влажности 0,970
Песок 20% влажности 1,330
Песчаник обожженный 1,500
Плитка облицовочная 1,050
Плитка термоизоляционная ПМТБ-2 0,036
Полистирол 0,082
Поролон 0,040
Портландцемент раствор 0,470
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,050
Резина 0,150
Рубероид 0,170
Сланец 2,100
Снег 1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) 0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности) 0,230
Сталь 52,0
Стекло 1,150
Стекловата 0,050
Стекловолокно 0,036
Стеклотекстолит 0,300
Стружки — набивка 0,120
Тефлон 0,250
Толь бумажный 0,230
Цементные плиты 1,920
Цемент-песок раствор 1,200
Чугун 56,0
Шлак гранулированный 0,150
Шлак котельный 0,290
Шлакобетон 0,600
Штукатурка сухая 0,210
Штукатурка цементная 0,900
Эбонит 0,160
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector