Модуль упругости бетона: виды, классификация. от чего зависит

Содержание:

алюминий, медь, стекло, железо и многое другое.

Материал Коэффициент линейного теплового расширения
(10-6 м/(мK)) / ( 10-6 м/(мoС)) (10-6 дюйм/(дюйм oF))
ABS (акрилонитрил-бутадиен-стирол) термопласт 73.8 41
ABS — стекло, армированное волокнами 30.4 17
Акриловый материал, прессованный 234 130
Алмаз 1.1 0.6
Алмаз технический 1.2 0.67
Алюминий 22.2 12.3
Ацеталь 106.5 59.2
Ацеталь , армированный стекловолокном 39.4 22
Ацетат целлюлозы (CA) 130 72.2
Ацетат бутират целлюлозы (CAB) 25.2 14
Барий 20.6 11.4
Бериллий 11.5 6.4
Бериллиево-медный сплав (Cu 75, Be 25) 16.7 9.3
Бетон 14.5 8.0
Бетонные структуры 9.8 5.5
Бронза 18.0 10.0
Ванадий 8 4.5
Висмут 13 7.3
Вольфрам 4.3 2.4
Гадолиний 9 5
Гафний 5.9 3.3
Германий 6.1 3.4
Гольмий 11.2 6.2
Гранит 7.9 4.4
Графит, чистый 7.9 4.4
Диспрозий 9.9 5.5
Древесина, пихта, ель 3.7 2.1
Древесина дуба, параллельно волокнам 4.9 2.7
Древесина дуба , перпендикулярно волокнам 5.4 3.0
Древесина, сосна 5 2.8
Европий 35 19.4
Железо, чистое 12.0 6.7
Железо, литое 10.4 5.9
Железо, кованое 11.3 6.3
Золото 14.2 8.2
Известняк 8 4.4
Инвар (сплав железа с никелем) 1.5 0.8
Инконель (сплав) 12.6 7.0
Иридий 6.4 3.6
Иттербий 26.3 14.6
Иттрий 10.6 5.9
Кадмий 30 16.8
Калий 83 46.1 — 46.4
Кальций 22.3 12.4
Каменная кладка 4.7 — 9.0 2.6 — 5.0
Каучук, твердый 77 42.8
Кварц 0.77 — 1.4 0.43 — 0.79
Керамическая плитка (черепица) 5.9 3.3
Кирпич 5.5 3.1
Кобальт 12 6.7
Констанан (сплав) 18.8 10.4
Корунд, спеченный 6.5 3.6
Кремний 5.1 2.8
Лантан 12.1 6.7
Латунь 18.7 10.4
Лед 51 28.3
Литий 46 25.6
Литая стальная решетка 10.8 6.0
Лютеций 9.9 5.5
Литой лист из акрилового пластика 81 45
Магний 25 14
Марганец 22 12.3
Медноникелевый сплав 30% 16.2 9
Медь 16.6 9.3
Молибден 5 2.8
Монель-металл (никелево-медный сплав) 13.5 7.5
Мрамор 5.5 — 14.1 3.1 — 7.9
Мыльный камень (стеатит) 8.5 4.7
Мышьяк 4.7 2.6
Натрий 70 39.1
Нейлон, универсальный 72 40
Нейлон, Тип 11 (Type 11) 100 55.6
Нейлон, Тип 12 (Type 12) 80.5 44.7
Нейлон литой , Тип 6 (Type 6) 85 47.2
Нейлон, Тип 6/6 (Type 6/6), формовочный состав 80 44.4
Неодим 9.6 5.3
Никель 13.0 7.2
Ниобий (Columbium) 7 3.9
Нитрат целлюлозы (CN) 100 55.6
Окись алюминия 5.4 3.0
Олово 23.4 13.0
Осмий 5 2.8
Палладий 11.8 6.6
Песчаник 11.6 6.5
Платина 9.0 5.0
Плутоний 54 30.2
Полиалломер 91.5 50.8
Полиамид (PA) 110 61.1
Поливинилхлорид (PVC) 50.4 28
Поливинилденфторид (PVDF) 127.8 71
Поликарбонат (PC) 70.2 39
Поликарбонат — армированный стекловолокном 21.5 12
Полипропилен — армированный стекловолокном 32 18
Полистирол (PS) 70 38.9
Полисульфон (PSO) 55.8 31
Полиуретан (PUR), жесткий 57.6 32
Полифенилен — армированный стекловолокном 35.8 20
Полифенилен (PP), ненасыщенный 90.5 50.3
Полиэстер 123.5 69
Полиэстер, армированный стекловолокном 25 14
Полиэтилен (PE) 200 111
Полиэтилен — терефталий (PET) 59.4 33
Празеодимий 6.7 3.7
Припой 50 — 50 24.0 13.4
Прометий 11 6.1
Рений 6.7 3.7
Родий 8 4.5
Рутений 9.1 5.1
Самарий 12.7 7.1
Свинец 28.0 15.1
Свинцово-оловянный сплав 11.6 6.5
Селен 3.8 2.1
Серебро 19.5 10.7
Скандий 10.2 5.7
Слюда 3 1.7
Сплав твердый (Hard alloy) K20 6 3.3
Сплав хастелой (Hastelloy) C 11.3 6.3
Сталь 13.0 7.3
Сталь нержавеющая аустенитная (304) 17.3 9.6
Сталь нержавеющая аустенитная (310) 14.4 8.0
Сталь нержавеющая аустенитная (316) 16.0 8.9
Сталь нержавеющая ферритная (410) 9.9 5.5
Стекло витринное (зеркальное, листовое) 9.0 5.0
Стекло пирекс, пирекс 4.0 2.2
Стекло тугоплавкое 5.9 3.3
Строительный (известковый) раствор 7.3 — 13.5 4.1-7.5
Стронций 22.5 12.5
Сурьма 10.4 5.8
Таллий 29.9 16.6
Тантал 6.5 3.6
Теллур 36.9 20.5
Тербий 10.3 5.7
Титан 8.6 4.8
Торий 12 6.7
Тулий 13.3 7.4
Уран 13.9 7.7
Фарфор 3.6-4.5 2.0-2.5
Фенольно-альдегидный полимер без добавок 80 44.4
Фторэтилен пропилен (FEP) 135 75
Хлорированный поливинилхлорид (CPVC) 66.6 37
Хром 6.2 3.4
Цемент 10.0 6.0
Церий 5.2 2.9
Цинк 29.7 16.5
Цирконий 5.7 3.2
Шифер 10.4 5.8
Штукатурка 16.4 9.2
Эбонит 76.6 42.8
Эпоксидная смола , литая резина и незаполненные продукты из них 55 31
Эрбий 12.2 6.8
Этилен винилацетат (EVA) 180 100
Этилен и этилакрилат (EEA) 205 113.9
Эфир виниловый 16 — 22 8.7 — 12

www.dpva.ru

Деформации бетона

12 мая 2016 г.

Деформативные свойства бетона определяются его начальным модулем упругости Еb. Этот модуль может быть определен в зави­симости от марки или класса бетона по таблице ниже.

Начальные модули упругости тяжелого бетона

Класс бетона

ВЮ

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Модуль упругости Еb·10-3 МПа

19

24

27,5

30

32,5

34,5

36

37

38

39

39,5

За начальный модуль упругости бетона при сжатии и растя­жении принимается отношение нормального напряжения в бето­не к его относительной деформации при величине напряжения σb < 0,2Rb. Упругие свойства бетона следует проверить путем эк­сперимента, определив начальный модуль упругости вь = 0,2Rb и условный модуль деформаций при σb = 0,2Rb, подвергнув осе­вому сжатию призму размером 100x100x300 мм, замеряя деформацию ε = Δl/l.

При однократном непрерывном сжатии бетонного образца мак­симальной разрушающей нагрузкой диаграмма напряжения-дефор­мации имеет криволинейное очертание, деформации в бетоне рас­тут быстрее напряжений (рис. ниже). Такой характер диаграммы возникает, потому что при быстром достижении максимального усилия в бетоне под действием нагрузки одновременно с упругими деформациями развиваются также неупругие, обусловленные пол­зучестью бетона. Ползучесть — это способность бетона деформи­роваться во времени даже при неизменной нагрузке.

Диаграммы напряжения-деформации бетона при сжатии

В момент окончательного разрушения призмы получают рас­четное сопротивление Rb. После этого строится график с отклады­ванием по оси х относительного удлинения, а по оси у — напряже­ния в бетоне (рис. выше).

Затем определяют:

1.  начальный модуль упругости при напряжении σb = 0,2Rb (тан­генс угла наклона касательной к действительной диаграмме σ-ε в начале координат)

tga0 = Eb = σb/εel

2.  с увеличением напряжений угол наклона касательной к кривой σb-εb будет уменьшаться (вследствие развития во времени де­формаций ползучести). Находят тангенс угла наклона к оси абс­цисс касательной, проведенной к этой кривой,

tga0 = E’b = dσb/dεb

3.  определяют условный модуль упругости (средний модуль упругопластичности бетона) при σb = 0,5Rb (тангенс угла наклона секущей к кривой полных деформаций)

tga1 = E’b = σb/εb

4.  выражая модуль упргопластичности бетона через модуль упру­гости (из выражений выше), получают коэффициент упругости бетона (коэффициент Пуассона)

v = εel/εb

Коэффициент Пуассона (отношение поперечной деформации к продольной) с увеличением напряжений в бетоне возрастает: на­чальное его значение принимается равным 0,2.

Призменная прочность бетона может быть получена по формуле

Rb = Nmax/A

где Nmax — разрушающая нагрузка, кН; А — площадь сечения об­разца, см2.

Параметры, от которых зависит упругость древесины

Модуль упругости древесины — параметр изменяющийся, на его значение влияют:

  • Влажность. Упругость древесины находится в обратной зависимости от влажности. То есть при высокой влажности дерева, его способность возвращаться к исходной форме будет минимальной.
  • Прямослойность. Если волокна расположены извилисто, беспорядочно, то способность восстанавливать форму у неё будет заметно ниже, чем у прямослойной.
  • Плотность. Дерево с низкой плотностью не так упруго, как более плотное.
  • Возраст дерева. Древесина старого дерева более упруга, чем молодого.
  • Природные особенности дерева. Хвойные деревья имеют однорядные мелкие сердцевинные лучи, поэтому их древесина более упругая, хотя удельный вес у таких пород не велик.
  • Возраст самой древесины. Более молодые слои ствола дерева называют заболонью, те, что располагаются ближе к центру, и, соответственно, старее – ядром. Заболонь более упругая, чем ядро.

Обустраиваем место для костра на даче: уличный очаг своими руками

Костер на даче — это особое удовольствие, которое недоступно нам в городской квартире. Сделав уличный очаг своими руками, вы сможете чаще наслаждаться игрой огня, приготовить что-то вкусное на решетке у очага, просто понежиться у тепла холодными вечерами.

Для чтобы костер смотрелся в саду гармонично, лучше обустроить для него постоянное место, которое бы предусматривало надлежащие противопожарные нормы и обеспечивало комфорт. И, хотя, уличный очаг на фото может смотреться совершенно роскошно, для его постройки не нужно значительных затрат ни времени, ни материалов.

Вы вполне можете выбрать для себя вариант, который сможете реализовать за пару выходных дней.

Как сделать уличный очаг из камня.

Для того, чтобы сделать уличный очаг с отделкой из натурального камня, сначала размечаем конуры очага и заливаем небольшую бетонную подушку под кладку.

Кладка будет состоять из двух слоев. Внутренний — кирпичный слой и наружный слой — из натурального камня.

Верхнюю часть очага также можно отделать камнем.

Для того, чтобы использовать кострище как мангал, предусмотрите для него решетку в соответствии с размерами очага.

Такое красивое место для костра можно разместить на террасе перед домом,  где вы сможете проводить действительно незабываемые вечера на даче.

Кострище из  бетонных блоков.

На самом деле самый простой уличный очаг можно сложить из обычных бетонных блоков.

Для того, чтобы максимально защитить почву от огня и для более удобной чистки очага, лучше поставить бетонные блоки на кирпичную площадку.

Если верх такого очага декорировать натуральным камнем, он будет выглядеть вполне респектабельно.

Расположив место для костра рядом с летней кухней и беседкой, вы получите еще одну замечательную зону отдыха в саду.

Очаг из полукруглого бородюра и тротуарной плитки.

Бетонные блоки выпускаются не только в форме прямоугольников, — полукруглые бетонные бордюры обычно используют для ограждения деревьев.

Такие бетонные блоки отлично подойдут для создания небольшого уличного очага.

Если полукруглые блоки найти не удалось, обратите внимание на тротуарную плитку. Оказывается, используя ее как кирпичи, тоже можно сделать кострище для дачи

Уличный очаг из кирпича.

Для тех, кто не сторонник излишнего креатива, проще всего использовать для создания очага кирпичи.

Выкладываем из кирпича нужный размер кострища, размечаем контуры и выкапываем яму на высоту кирпича. Обкладываем контуры очага, подсыпая на дно гравий. Совет: если стенки у ямы сделать немного под наклоном наружу, то конструкция получиться более устойчивой.

Минимально украсив верхнюю часть очага, вы получите уютное и красивое кострище на даче. В очаг можно поставить металлическую треногу и готовить кулеш. Для любителей мяса можно установить простой вертел и готовит птицу целиком на вертеле.

Как сделать площадку для костра на даче.

Чтобы вписать кострище в общий дизайн сада, можно сделать для него специальную площадку.

Такое место для костра будет более уютным и удобным т.к. каменный бордюр можно использовать как скамейку, а плавная форма площадки добавит элегантную нотку в ландшафтный дизайн всего сада.

Уличный очаг из подручных материалов.

Для любителей применять подручные материалы также есть красивые варианты уличного очага.

Например, можно сделать такой красивый очаг из старого таза и остатков камня и металла.

На самом деле для внутренней части очага подойдет любой прочный металл.

Этим металлом может стать бак от стиральной машины.

Для его функционирования достаточно приварить к нему ноги.

А можно добавить минимальную кладку из кирпича. Работы немного, а разница ощутимая.

Иногда место для костра располагают в углублении на участке — этот прием используют для ветреного или шумного участка, так создается более спокойная и тихая атмосфера у кострища.

Уличный очаг из металла.

Не обязательно использовать для чаши костра остатки бытовой техники.

Можно просто купить лист оцинкованного металла и сварить из него нехитрую конструкцию для  очага.

Единственный недостаток этой конструкции, что ее стенки серьезно нагреваются и надо изолировать очаг от легковоспламеняющихся поверхностей.

Уличный очаг из автомобильного диска.

Поэтому лучше  очаг из металла снаружи обложить кирпичом или декоративным камнем.

В качестве основы для этого очага был взят диск от тракторного колеса.

Как сделать очаг из бетона своими руками.

Для уличного очага из бетона  необходимо сделать опалубку в соответствии с выбранными вами  размерами кострища. Для прочности конструкции дополнительно положите в опалубку металлическую арматуру.

После того, как бетон застынет, снимите опалубку и зачистите внешнюю сторону очага.

Насыпьте мелкий гравий внутрь очага, установите металлическую чашу для костра и сверху добавьте гальку или более крупный гравий.

Бетонный очаг можно декорировать камнем или просто оставить в таком виде, какой он есть — так он будет иметь более современный лаконичный вид.

Уличный очаг удобно расположить в открытой беседке —  такое место может стать центром притяжения всей дачной жизни.

Если вы не большой поклонник вечеров у костра и блюд на открытом огне, то вам больше подойдет небольшая мобильная чаша для костра.

Ее, как и очаг, можно использовать как в декоративных целях, так и для приготовления блюд на решетке или треноге.

Круглые или квадратные, каменные или бетонные блоки, независимо выбранного вами стиля, всегда найдется уличный очаг, который подойдет для вашей дачи.  Маленькие или большие — почти каждый этот очаг является бюджетным вариантом, который в состоянии добавить нотку настоящей роскоши вашему саду!

Фотогалерея (40 фото)

Модуль деформаций бетона

Начальный модуль упругости бетона при сжатии соответствует лишь упругим деформациям, возникающим при мгновенном загружении или при напряжениях . Он определяется в соот­ветствии с законом Гука как тангенс угла наклона прямой упругих деформаций к оси абсцисс (рис. 1.11), т.е.

где р = 1 МПа — масштабно-размерный коэффициент.

Обычно определяется из специальных опытов на призмах при низком уровне напряжений (), когда бетон можно рассматривать как упругий материал.

При действии на бетон нагрузки, при которой , хотя бы в течение нескольких минут, в связи с развитием пластических деформаций (включая ползучесть) модуль полных деформаций бе­тона становится величиной переменной.

Для расчёта железобетонных конструкций пользуются сред­ним модулем деформаций или модулем упругопластичности бетона, представляющим собой тангенс угла наклона секущей, проведённой через начало координат и точку на кривой с заданным на­пряжением, к оси абсцисс, т.е.

Начальный модуль упругости бетона при растяжении по аб­солютной величине принимается равным , то есть , а

где vt = 0,15 — значение коэффициента упругопластичности бетона при растяжении в момент, предшествующий разрушению.

Значения модуля сдвига бетона G принимают по установленной в теории упругости зависимости

Подставив в неё начальный коэффициент поперечной деформации бетона ν=0,2, получим .

ЛЕКЦИЯ 3

Арматура для железобетонных конструкций

  1. Назначение арматуры и требования к ней

2. Виды арматуры

3. Физико-механические свойства арматурных сталей

4. Классификация арматуры по основным характери­стикам. Сортамент арматуры

5. Сварные арматурные изделия

6. Соединения арматуры

1. Назначение арматуры и требования к ней

Под арматурой понимают отдельные стержни или целые каркасы, которые располагаются в массе бетона в соответствии со статиче­ской схемой работы конструкции.

Арматура в железобетонных конструкциях используется пре­имущественно для восприятия растягивающих усилий. Но иногда арматуру применяют и для усиления сжатого бетона (например, в колоннах), а также для восприятия температурных и усадочных на­пряжений.

Арматура для железобетонных конструкций должна удовлетво­рять следующим требованиям:

под нагрузкой надёжно работать совместно с бетоном (за счёт сцепления) на всех стадиях службы конструкции;

использоваться до предела текучести или предела прочности при исчерпании конструкцией несущей способности.

2. Виды арматуры

Многообразие видов железобетонных конструкций определяет необ­ходимость применения широкой номенклатуры арматурных сталей.

Для изготовления арматуры используют конструкционные стали обычно с содержанием углерода не более 0,65%, так как стали с более высоким содержанием углерода плохо свариваются.

Арматура классифицируется по функциональному назначению и способу изготовления по четырём признакам.

1. По технологии изготовления арматуру делят на: стержневую го­рячекатаную, термомеханически упрочненную и механически упрочненную в холодном состоянии (холоднодеформированную).

2. По форме наружной поверхности арматура бывает гладкая и пе­риодического профиля.

3. По способу применения: арматура, которую укладывают в кон­струкцию без предварительного напряжения, называется ненапрягаемой, арматура, которую при изготовлении конструкции предва­рительно натягивают — напрягаемой.

4. Арматура, устанавливаемая в железобетонных конструкциях по расчёту, называется рабочей. Площадь её поперечного сечения опре­деляется расчётом элементов конструкций на различные нагрузки и воздействия. Её главное назначение — восприятие растягивающих усилий в сечениях. Поэтому она располагается в растянутой зоне вдоль линии действия этих усилий, т. е. перпендикулярно к воз­можному направлению трещин.

Арматура, устанавливаемая по конструктивным или технологи­ческим соображениям, называется монтажной или распределитель­ной (в плитах). Она обеспечивает проектное положение рабочей ар­матуры в конструкции и более равномерно распределяет усилия между отдельными стержнями рабочей арматуры. Кроме того, мон­тажная арматура может воспринимать обычно не учитываемые рас­чётом усилия от усадки бетона, изменения температуры конструк­ции и т. п. Она может также выполнять роль рабочей при транспор­тировании и монтаже конструкции.

Модуль деформации бетона и мера ползучести.

Таблица показателей упругости материалов

Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.

Модуль упругости различных материалов

Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя. Каждый волен выбирать именно тот вариант изучения показателей, который больше подойдёт ему. Предпочтительнее, возможно, считать модуль Юнга, так как он чаще применяется именно для характеристики того или иного материала в этом отношении.

После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.

Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:

  • Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
  • Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
  • Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
  • Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
  • Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
  • Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
  • И напоследок коэффициент Пуассона для стали равен значению 0,3

Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.

Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).

Сталь и несколько разных её марок

Значения показателей упругости стали разнятся, так как существуют сразу несколько модулей, которые исчисляются и высчитываются по-разному. Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов. Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.

Кстати, если не выражать все значения числовыми отношениями, а взять сразу и пос, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2.

Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.

Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения. Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода. Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.

Это интересно: Молибден — свойства, формула, применение элемента и сплавы на его основе

Модуль упругости — что это?

Модулем упругости какого-либо материала называют совокупность физических величин, которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.

Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:

  • Модуль Юнга (Е) описывает сопротивление материала любому растяжению или сжатию при упругой деформации. Определяется вариант Юнга отношением напряжения к деформации сжатия. Обычно именно его называют просто модулем упругости.
  • Модуль сдвига (G), называемый также модулем жёсткости. Этот способ выявляет способность материала оказывать сопротивление любому изменению формы, но в условиях сохранения им своей нормы. Модуль сдвига выражается отношением напряжения сдвига к деформации сдвига, которая определяется в виде изменения прямого угла между имеющимися плоскостями, подвергающимися воздействию касательных напряжений. Модуль сдвига, кстати, является одной из составляющих такого явления, как вязкость.
  • Модуль объёмной упругости (К), которые также именуется модулем объёмного сжатия. Данный вариант обозначает способность объекта из какого-либо материала изменять свой объём в случае воздействия на него всестороннего нормального напряжения, являющимся одинаковым по всем своим направлениям. Выражается этот вариант отношением величины объёмного напряжения к величине относительного объёмного сжатия.
  • Существуют также и другие показатели упругости, которые измеряются в других величинах и выражаются другими отношениями. Другими ещё очень известными и популярными вариантами показателей упругости являются параметры Ламе или же коэффициент Пуассона.

Как установить столб под электричество на участке

Стандарт определения и таблица модулей упругости бетона

Выбор стройматериала является важнейшей задачей строителя перед началом выполнения работ. Модуль упругости бетона — один из главных критериев, влияющих на эксплуатационные характеристики

Параметр определяет возможность стеснения и расширения материала, зависит от многих факторов, которые важно учитывать

Что за величина?

Модуль упругости бетона — это возможность конструкции противостоять изменениям под воздействиями внешних факторов.

Это важный критерий выбора марки материала для определенной работы, так как затвердевший материал в процессе эксплуатации сжимается и растягивается.

Поэтому на этапе проектирования нужно правильно рассчитать допустимые значения для той или иной конструкции. Для расчетов пользуются таблицами определения модуля упругости, что представлены в нормативах для строительных работ.

Разновидности бетона и их показатель упругости

Бетонный камень в окончательном виде — твердый материал, что под влиянием внешней среды способен деформироваться. При постоянных механических нагрузках, даже модуль упругости железобетона может быть недостаточно высоким. Для определения вида прочности учитывается 2 критерия — растяжение и сжатие, что влияют на сопротивление нагрузкам.

Различают следующие виды материала:

Материал может производиться в нескольких разновидностях.

  • тяжелые;
  • легкие;
  • мелкозернистые;
  • поризованные;
  • автоклавного твердения.

Таблица, содержащая классы и соответствующие модули упругости

Классификация в таблице производится согласно СП 52—101—2003:

Класс бетона Модуль упругости
19,0 В10
24,0 В15
27,5 В20
30,0 В25
32,5 В30
34,5 В35
36,0 В40
37,0 В45
38,0 В50
39,0 В55
39,5 В60

От чего зависит величина?

На величину данного показателя значительно влияет наполнитель в материала.

Упругость раствора зависит от множества факторов

Первое, на что обращают внимание — наполнитель. Коэффициент напрямую связан с упругостью раствора

Так, высокими показателями являются тяжелые бетоны, наполнителями в которых являются гравий и щебень

Допустимые нагрузки на постройки из такого материала самые высокие, поэтому важно выбирать правильные заполнители

Учитывают не только интенсивность нагрузок, но и частоту.

Возраст и время укладки материала играют немаловажную роль в показателях модуля упругости. Крепость материала возрастает на протяжении 50 лет с момента заливки, вне зависимости от внешних температур (до 230 ⁰C).

Кроме того, характеристики завися от процесса затвердевания (автоклавный, естественный).

Чтобы узнать продолжительность предполагаемых нагрузок, нужно начальный показатель перемножать с показателем: 0,7 для поризованных бетонов, 0,85 — для тяжелых легких и мелкозернистых.

Возраст залитого материала находится в прямопропорциональной зависимости с данным показателем.

Классы бетонного раствора в частной стройке варьируют в пределах В7,5—30 (марки М100—400), но таких прочностных и других характеристик хватает вне зависимости от требований и сложностей конструкций.

Показатели модуля увеличивает арматура, так как характеристики арматуры повышают показатели общей конструкции. Методика укладки арматуры в бетон определяется ГОСТом 24452—80.

Посмотреть «ГОСТ 24452-80» или cкачать в PDF (350 KB)

Как определить?

СП 52 101 2003 — стандарт определения параметров применения бетона.

Здесь указаны значения всех необходимых коэффициентов для расчета параметров, а подтверждение проводится путем эксперимента на изготовленных образцах.

Суть испытания заключается в постепенной нагрузке на образцы (цилиндры или призмы из бетонной смеси) путем осевого сжимающего нагружения до разрушения. Параллельно измеряется степень деформации.

Посмотреть «СП 52-101-2003» или cкачать в PDF (1007.4 KB)

Результаты можно обозначить следующим образом:

  • Показатель соответствует расчетам, образец поддался пластической деформации без растрескивания.
  • Предварительные подсчеты неверные: при предполагаемом нагружении образец подвергается сильным разрушениям.

Расчетным способом определяют запас прочности не только обычных зданий, но и арочных сооружений, перекрытий, мостов и дорог. Модуль упругости асфальтобетона при использовании — проблемная задача проектирования, так как подход, разрешающий провести точные расчеты еще не выведен. Не удается определить взаимосвязь между статическим и динамическим модулями в процессе использования дорог.

Расстояние от ЛЭП до жилого дома: возможный вред здоровью и безопасный норматив СанПиН

Виды раствора

Все подобные материалы подразделяются на несколько видов. Самое интересное заключается в том, что даже не все профессиональные строители знают, что существует несколько разновидностей бетона:

  1. Тяжелые. Такой вид имеет маркировку М100, М150, М200 и т. д. В состав смеси входят плотные наполнители известняк и гранит. Тяжелый бетон является высокопрочным. Он быстро затвердевает, поэтому его главное предназначение — сборные железобетонные конструкции.
  2. Легкие. В такой бетон при изготовлении добавляют легкие пористые наполнители, такие как керамзит, пемза, вспученный шлак и другие. Благодаря такому составу материал становится намного легче, поэтому его используют для возведения несущих стен и других ограждающих сооружений.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector