Допустимый ток для медных проводов

Содержание:

Потери давления на местных сопротивлениях

В сети воздуховодов есть места наибольшего сопротивления потоку воздуха: повороты, изгибы, тройники, места изменения сечения на переходниках. Расчёт их аэродинамических потерь производится отдельно, так как каждый тип фасонного изделия имеет индивидуальные коэффициенты сопротивления.

Таблица коэффициентов местного сопротивления (КМС) для различных фасонных изделий

Формула потери давления на каждом участке местного сопротивления с учётом коэффициентов:

где S – скорость, ρ – плотность воздуха.

Общая формула потери давления в фасонных изделиях:

Σξ – сумма параметров местных сопротивлений.

Звуко- и теплоизоляция вентиляционных коробов

Зависимость тока, мощности и сечения жил

Измерить и произвести расчеты площади сечения кабеля по диаметру жилы недостаточно. Перед прокладкой проводки или иных типов электросетей необходимо также знать пропускную способность кабельной продукции.

  • Выбирая кабель, необходимо руководствоваться несколькими критериями:
  • сила электротока, которую будет пропускать кабель;
  • мощность потребителей;
  • токовая нагрузка, оказываемая на кабель.

Мощность

Самым важным параметром при электромонтажных работах (в частности прокладке кабелей) является пропускная мощность. От сечения проводника зависит максимальная мощность передаваемой по нему электроэнергии

Поэтому крайне важно знать общую мощность источников потребления энергии, которые будут подключены к проводу

Обычно производители бытовой техники, приборов и иных электротехнических изделий указывают на этикетке и в прилагаемой к ним документации максимальную и среднюю мощность потребления.

Например, машина для стирки белья может потреблять электроэнергию в диапазоне от десятков Вт/ч при режиме полоскания до 2,7 кВт/ч при нагреве воды.

Соответственно, к ней должен подключаться провод с тем сечением, которого хватит для передачи электроэнергии максимальной мощности. Если к кабелю подключается два и более потребителя, то общая мощность определяется путем сложения предельных значений каждого из них.

Усредненная мощность всех электроприборов и осветительных устройств в квартире редко превышает 7500 Вт для однофазной сети. Соответственно, сечения кабелей в электропроводке необходимо подбирать под это значение.

Рекомендуется округлять сечение в сторону увеличения мощности из-за возможного увеличения потребляемой электроэнергии в будущем. Обычно берут следующую по числу площадь сечения от рассчитанной величины. Так, для значения общей мощности 7,5 кВт необходимо использовать медный кабель с сечением жилы 4 мм2, который способен пропустить около 8,3 кВт. Сечение проводника с алюминиевой жилой в таком случае должно быть не менее 6 мм2, пропускающее мощность тока от 7,9 кВт.

В индивидуальных жилых постройках нередко применяется трехфазная система электроснабжения на 380 В. Однако большая часть техники не рассчитана на такое электронапряжение. Напряжение в 220 В создается посредством их подсоединения в сеть через нулевой кабель с равномерным распределением токовой нагрузки на все фазы.

Электроток

Зачастую мощность электрооборудования и техники может быть не известна владельцу из-за отсутствия этой характеристики в документации или полностью утерянных документов, этикеток. Выход в такой ситуации один – произвести расчет по формуле самостоятельно.

Мощность определяется по формуле:

P = U*I

  • где:
  • Р – мощность, измеряемая в ваттах (Вт);
  • I – сила электротока, измеряемая в амперах (А);
  • U – приложенное электронапряжение, измеряемое в вольтах (В).
  • Когда неизвестна сила электротока, то ее можно измерить контрольно-измерительными приборами:
  • амперметром;
  • мультиметром;
  • токоизмерительными клещами.

После определения потребляемой мощности и силы электротока можно посредством нижеприведенной таблицы узнать необходимое сечение кабеля.

Нагрузка

Расчет сечения кабельных изделий по токовой нагрузке необходимо производить для дальнейшей защиты их от перегрева. Когда по проводникам проходит слишком большой электроток для их сечения, то может происходить разрушение и оплавление изоляционного слоя.

Предельно допустимая длительная токовая нагрузка – это количественное значение электротока, который сможет пропускать кабель достаточно долго без перегревов. Для определения этого показателя изначально необходимо просуммировать мощности всех энергопотребителей.

После этого произвести вычисления токовой нагрузки по формулам:

однофазная сеть:  I = P*Ki/U

трехфазная сеть:  I = P*Ki/(√3*U)

  • где:
  • P – общая мощность энергопотребителей;
  • Ki – коэффициент, равный 0,75;
  • U – электронапряжение в сети.

Другие статьи по теме:

Параллельное соединение проводов электропроводки

Бывают безвыходные ситуации, когда срочно нужно проложить проводку, а провода требуемого сечения в наличии нет. В таком случае, если есть провод меньшего, чем необходимо, сечения, то можно проводку сделать из двух и более проводов, соединив их параллельно. Главное, чтобы сумма сечений каждого из них была не меньше расчетной.

Например, есть три провода сечением 2, 3 и 5 мм2, а нужен по расчетам 10 мм2. Соединяете их все параллельно, и проводка будет выдерживать ток до 50 ампер. Да Вы и сами многократно видели параллельное соединение большего количества тонких проводников для передачи больших токов.

Например, для сварки используется ток до 150 А и для того, чтобы сварщик мог управлять электродом, нужен гибкий провод. Его и делают из сотен параллельно соединенных тонких медных проволочек. В автомобиле аккумулятор к бортовой сети тоже подключают с помощью такого же гибкого многожильного провода, так как во время пуска двигателя стартер потребляет от аккумулятора ток до 100 А.

А при установке и снятии аккумулятора необходимо провода отводить в сторону, то есть провод должен быть достаточно гибким. Способ увеличения сечения электропровода путем параллельного соединения нескольких проводов разного диаметра можно использовать только в крайнем случае. При прокладке домашней электропроводки допустимо соединять параллельно только провода одинакового сечения, взятые из одной бухты.

Понос у кроликов: причины диареи, что делать и чем лечить

Пуфик-ящик

Отличная идея, как сделать пуфик в прихожую своими руками, в котором можно хранить различные вещи:

  • Из ДСП сделайте 3 панели следующих габаритов: 1 – 37х37 см, 1 – 37х47 см, 1 – 40х40 см.
  • Подготовьте из брусков сечением 4х4 см 4 элемента длиной в 37 см.
  • Соберите из подготовленных деталей коробку высотой 37 см.
  • Для сборки используйте клей для дерева, уголки и шурупы.

К крышке прикрепите 4 бруска, выполняющие стопорную функцию. Это обеспечит надежное закрытие. Стопоры должны плотно прижиматься к каркасным брускам.

Что необходимо для создания модной ванной?

Несколько лет назад интерьер ванной комнаты был предсказуемым и однообразным с типичной плиткой, ванной и раковиной.

На сегодняшний день дела обстоят куда иначе, ведь нам доступно не только обилие строительных материалов всевозможных цветов, но и различная мебель.

Выполнять дизайн следует исходя не из новинок ванной комнаты, а ориентируясь на собственные желания и финансовые возможности.

Если вы являетесь обладателем маленькой ванной, то стоит обратить внимание на подвесную мебель, которая позволит сэкономить пространство комнаты.

В то же время на такой мебели можно разместить все нужные вам мелочи: косметику, ванные принадлежности и прочее. Планировать расположение стиральной и сушильной машины необходимо заранее.

Продолжив рассматривать современный дизайн ванной комнаты 2020 года, стоит обратить внимание на использование светлых тонов в интерьере и зеркальных поверхностей.

Наиболее удачным будет вариант, в котором используются элементы с правильными формами, аккуратными и минималистическими деталями.

Фото встроенных кухонь

Рассеяние пучков частиц

В часто встречающемся случае упругого рассеяния пучка частиц, движущихся с одинаковой скоростью, на некотором центре, используется дифференциальное эффективное поперечное сечение (dσdΩ{\displaystyle {d\sigma /d\Omega }}), характеризующее вероятность рассеяния в определённый телесный угол (dΩ{\displaystyle d\Omega }). Оно равно отношению числа частиц, рассеянных в единицу времени в единицу телесного угла, к плотности потока падающих частиц.

Интегрирование по полному телесному углу даёт полное поперечное сечение, для рассеяния на любые углы:

σ=∫dσdΩdΩ{\displaystyle \sigma =\int {d\sigma \over d\Omega }d\Omega }

При наличии неупругих взаимодействий полное сечение складывается из сечения для упругих и неупругих рассеяний. Для каждого типа (канала) неупругих взаимодействий может быть введено отдельное эффективное сечение.

Зависимость сопротивления проводника от частоты тока

При воздействии электрического тока индукция магнитного поля происходит внутри прямолинейного проводника и в окружающем его пространстве. Магнитные линии образуют концентрические окружности.

Если проводник с током условно разбить на несколько параллельных друг другу нитей тока, то можно установить, что, чем ближе токовая нить находится к оси проводника, тем больший замыкающийся внутри магнитный поток её охватывает. Индуктивность нити и индуктивное сопротивление находятся в пропорциональной зависимости от магнитного потока, с нею связанного.

В связи с этим в нитях с переменным током, находящихся внутри проводящего вещества, возникает большее индуктивное сопротивление, чем в нитях, находящихся снаружи. Образуется неравномерность тока по сечению, возрастающая от оси к поверхности проводника, чем и объясняется увеличение сопротивления проводников переменному току. Это явление называется поверхностным эффектом.

Из-за неравномерного распределения плотности тока происходит увеличение сопротивления проводника. При небольшой частоте в 50 Гц и малом сечении медного провода явление поверхностного эффекта почти незаметно. При значительном увеличении частоты и сечения проводника из железа это явление будет более активным.

Обратите внимание! Чем выше частота тока в цепи, тем ближе к поверхности проводника находятся электрические заряды, и тем больше возрастает его сопротивление

Площадь и объем

Принцип Кавальери гласит, что твердые тела с соответствующими поперечными сечениями равных площадей имеют равные объемы.

Площадь поперечного сечения ( ) объекта при просмотре под определенным углом — это общая площадь ортогональной проекции объекта под этим углом. Например, цилиндр высотой h и радиусом r имеет, если смотреть вдоль его центральной оси, и если смотреть с ортогонального направления. Сфера радиуса r имеет, если смотреть под любым углом. В более общем смысле, его можно вычислить, вычислив следующий интеграл по поверхности:
А′{\ displaystyle A ‘}А′знак равноπр2{\ displaystyle A ‘= \ pi r ^ {2}}А′знак равно2рчас{\ displaystyle A ‘= 2rh}А′знак равноπр2{\ displaystyle A ‘= \ pi r ^ {2}}А′{\ displaystyle A ‘}

А′знак равно∬топdА⋅р^,{\ displaystyle A ‘= \ iint \ limits _ {\ mathrm {top}} d \ mathbf {A} \ cdot \ mathbf {\ hat {r}},}

где — единичный вектор, указывающий вдоль направления взгляда к наблюдателю, — это элемент поверхности с направленной наружу нормалью, а интеграл берется только по самой верхней поверхности, той части поверхности, которая «видна» с перспектива зрителя. В случае выпуклого тела каждый луч, проходящий через объект с точки зрения наблюдателя, пересекает только две поверхности. Для таких объектов интеграл можно взять по всей поверхности ( ), взяв абсолютное значение подынтегрального выражения (так, чтобы «верх» и «низ» объекта не вычитались, как того требует теорема о расходимости применяется к постоянному векторному полю ) и делится на два:
р^{\ displaystyle \ mathbf {\ hat {r}}}dА{\ displaystyle d \ mathbf {A}}А{\ displaystyle A}р^{\ displaystyle \ mathbf {\ hat {r}}}

А′знак равно12∬А|dА⋅р^|{\ displaystyle A ‘= {\ frac {1} {2}} \ iint \ limits _ {A} | d \ mathbf {A} \ cdot \ mathbf {\ hat {r}} |}

Вздутие живота у кроликов: симптомы, причина и лечение, видео, личный опыт

Площадь поперечного сечения как электротехническая величина

От поперечного сечения зависит токопроводимость провода

В качестве примера сечения можно рассмотреть распил изделия под углом 90 градусов относительно поперечной оси. Контур фигуры, получившейся в результате, определяется конфигурацией объекта. Кабель имеет вид небольшой трубы, поэтому при распиле выйдет фигура в виде двух окружностей определенной толщины. При поперечном рассечении круглого металлического прута получится форма круга.

В электротехнике площадь ПС будет значить прямоугольное сечение проводника в отношении к его продольной части. Сечение жил всегда будет круглым. Измерение параметра осуществляется в мм2.

Начинающие электрики могут перепутать диаметр и сечение элементов. Чтобы определить, какая площадь сечения у жилы, понадобиться учесть его круглую форму и воспользоваться формулой:

S = πхR2, где:

  • S – площадь круга;
  • π – постоянная величина 3,14;
  • R – радиус круга.

Если известен показатель площади, легко найти удельное сопротивление материала изготовления и длину провода. Далее вычисляется сопротивление тока.

Для удобства расчетов начальная формула преобразуется:

  1. Радиус – это ½ диаметра.
  2. Для вычисления площади π умножается на D (диаметр), разделенный на 4, или 0,8 умножается на 2 диаметра.

Определение

Эффективное сечение определяется как отношение числа взаимодействий N{\displaystyle N} в единицу времени для потока частиц сорта 1{\displaystyle 1} с плотностью n1{\displaystyle n_{1}}, летящих со скоростью v1{\displaystyle v_{1}} падающих на мишень, состоящую из частиц сорта 2{\displaystyle 2} с плотностью частиц n2{\displaystyle n_{2}} и объёмом V{\displaystyle V} к плотности потока n1v1{\displaystyle n_{1}v_{1}} и к числу частиц в мишени n2V{\displaystyle n_{2}V}:

σ=Nn1v1n2V{\displaystyle \sigma ={\frac {N}{n_{1}v_{1}n_{2}V}}}

Такое сечение с достаточной полнотой характеризует, например, процесс поглощения (нейтрона или фотона). Из известного сечения поглощения и плотности поглощающих центров n2{\displaystyle n_{2}} можно подсчитать коэффициент поглощения μ{\displaystyle \mu } частиц сорта 1 в материале мишени:

μ=n2σ.{\displaystyle \mu =n_{2}\sigma .}

Дифференциальное сечение рассеяния

Основная статья: Рассеяние частиц

В случае упругого рассеяния пучка частиц, рассеянные частицы вылетают под разными углами по отношению к направлению импульса падающей частицы используется. Детальное описание этого процесса даёт дифференциальное эффективное сечение (dσdΩ){\displaystyle \left({\mathrm {d} \sigma \over \mathrm {d} \Omega }\right)}, в определение которого вместо полного числа взаимодействий в единицу времени входит дифференциал числа взаимодействий в единицу времени dN{\displaystyle \mathrm {d} N} в результате которых частица сорта 1 приобрела импульс с направлением в элементе телесного угла (dΩ{\displaystyle \mathrm {d} \Omega }):

dσ=dNn1v1n2V{\displaystyle \mathrm {d} \sigma ={\frac {\mathrm {d} N}{n_{1}v_{1}n_{2}V}}} или dσdΩ=dNdΩn1v1n2V{\displaystyle {\frac {\mathrm {d} \sigma }{\mathrm {d} \Omega }}={\frac {\frac {\mathrm {d} N}{\mathrm {d} \Omega }}{n_{1}v_{1}n_{2}V}}}

Интегрирование по полному телесному углу даёт полное сечение, для рассеяния на любые углы:

σ=∫dσdΩdΩ{\displaystyle \sigma =\int {d\sigma \over d\Omega }d\Omega }

При наличии неупругих взаимодействий полное сечение складывается из сечения для упругих и неупругих рассеяний. Для каждого типа (канала) неупругих взаимодействий может быть введено отдельное эффективное сечение.

Дифференциальное сечение реакции

При прохождении через мишень, частицы сорта 1{\displaystyle 1} сталкиваются с частицами сорта 2{\displaystyle 2} и вступают в реакцию 1+2→3+4{\displaystyle 1+2\rightarrow 3+4}, в результате которой из мишени вылетают частицы сорта 3{\displaystyle 3} и 4{\displaystyle 4}. Обозначим как dN{\displaystyle dN} число частиц сорта 3{\displaystyle 3} или 4{\displaystyle 4}, которые за 1 сек пролетают через элемент dS{\displaystyle dS} поверхности, стягивающей бесконечно малый элемент телесного угла dΩ{\displaystyle d\Omega }. Эффективным сечением называется величина dσ=dNn1v1n2V{\displaystyle d\sigma ={\frac {dN}{n_{1}v_{1}n_{2}V}}}. Дифференциальное эффективное сечение равно отношению эффективного сечения к элементу телесного угла dσdΩ=dNdΩn1v1n2V{\displaystyle {\frac {d\sigma }{d\Omega }}={\frac {\frac {dN}{d\Omega }}{n_{1}v_{1}n_{2}V}}}.
Интегральное эффективное сечение равно σ=∫dσ=∫dσdΩdΩ=Nn1v1n2V{\displaystyle \sigma =\int d\sigma =\int {\frac {d\sigma }{d\Omega }}d\Omega ={\frac {N}{n_{1}v_{1}n_{2}V}}}, где N{\displaystyle N} — полное число вылетающих в единицу времени из тонкой мишени частиц 3{\displaystyle 3} или 4{\displaystyle 4}.

Технический расчет вентсистемы

Перед началом проектирования необходимо провести точный расчет системы вентиляции. Его проводят инженеры с соответствующим образованием. По расчетным данным определяется схема движения потоков, устанавливается тип вентилирования, выбирается мощность, производительность силового оборудования, сечение воздуховодов. Эта информация необходима для дальнейшего проектирования экономичной, эффективной вентсистемы.

Ошибки при расчете заключаются в неправильном выборе мощности оборудования.

  • Излишняя производительность значительно повысит цену проекта при закупке силовых установок. Их стоимость напрямую зависит от мощности. Сформированные потоки будут двигаться с избыточной скоростью, создавая сквозняки. Эксплуатационные расходы возрастут многократно.
  • Оборудование с недостаточной мощностью не сможет сформировать стабильные, направленные потоки, вентилирование не будет соответствовать установленным нормативам.

Расчет проводится по разработанной методике, где учитываются:

  • размеры, целевое назначение объекта, особенности архитектурного решения;
  • необходимая кратность воздухообмена, объем подачи воздушных масс из расчета на одного человека или на квадратный метр площади (с учетом высоты потолков);
  • мощность нагревательных/охладительных элементов, типы фильтров, сопротивление системы;
  • давление, скорость потока, создаваемые вентиляторами;
  • уровень шума от работающих силовых установок, движение воздуха по каналам.

Все эти факторы были учтены при разработке типовых проектов с различными требованиями к параметрам воздуха. Наши инженеры провели полный расчет приточно вытяжной вентиляции, калькулятор, установленный на сайте, поможет всем желающим ознакомиться с этой информацией.

Чем очистить пену с одежды

Поскольку частицы герметика надежно связываются с волокнами одежды и заполняют все полости, оттереть засохшую монтажную пену сложно. Для этих целей предназначены средства: уайт-спирит, пятновыводители, дистиллированный бензин, растворители герметиков.

Последовательность действий:

  • срезать выступающие части вещества;
  • на загрязненный участок одежды нанести одно из перечисленных средств;
  • подождать 15-20 минут;
  • остатки удалить губкой или влажной тканью;
  • при необходимости процедуру повторить;
  • постирать вещь в стиральной машине, используя многократное полоскание.

Предварительно изучите информацию на бирке изделия, разрешено ли использование химических средств для данного типа ткани.

Пятна от монтажной пены полностью удаляются, если загрязненную одежду поместить в морозильную камеру на час. Затем остатки герметика очистить механическим способом, если это не помогает – применить растворитель. После очистки вещь постирать.

Вещи из плотной ткани (джинсы, куртки, спецодежда) очищают Димексидом. Работать нужно в перчатках, раствор концентрированный и в медицинских целях его разбавляют водой. Препарат нанести ватной палочкой на пятно на 5-10 минут и оттереть загрязнение щеткой.

Заведем хоровод

Сечение сегментного кабеля

Кабельная продукция с сечением до 10 мм2 практически всегда производится круглой формы. Таких проводников вполне достаточно для обеспечения бытовых нужд домов и квартир. Однако при большем сечении кабеля жилы ввода от внешней электрической сети могут выполняться в сегментном (секторном) виде, и определить сечение провода по диаметру уже будет довольно сложно.

Алюминиевый кабель с секторными жилами

В таких случаях необходимо прибегнуть к таблице, где размер (высота, ширина) кабеля принимает соответствующее значение площади сечения. Изначально необходимо линейкой измерить высоту и ширину требуемого сегмента, после чего требуемый параметр может быть рассчитан соотнесением полученных данных.

Таблица расчета площади сектора жилы электрокабеля

Тип кабеля Площадь сечения сегмента, мм2
S 35 50 70 95 120 150 185 240
Четырехжильный сегментный в 7 8,2 9,6 10,8 12 13,2
ш 10 12 14,1 16 18 18
Трехжильный сегментный многопроволочный, 6(10) в 6 7 9 10 11 12 13,2 15,2
ш 10 12 14 16 18 20 22 25
Трехжильный сегментный однопроволочный, 6(10) в 5,5 6,4 7,6 9 10,1 11,3 12,5 14,4
ш 9,2 10,5 12,5 15 16,6 18,4 20,7 23,8

Видео

Чем отличается сечение от диаметра

Поперечное сечение в форме круга обязательно должно иметь диаметр. Само по себе сечение — это разрез кабеля или любого другого предмета под прямым углом к продольной оси. Диаметр же представляет собой хорду, то есть отрезок, который соединяет две точки на окружности и проходит точно через ее центр. Диаметр есть не только у окружности или круга, но и у сферы, шара. Общего у этих величин мало, так как одна определяет расстояние, а другая — площадь.

Площадь такого кабеля рассчитать самостоятельно сложно

Обратите внимание! Сечение всегда используется на практике для объемных тел, а кабель или провод — объемные предметы, которые чаще всего изготавливают в виде длинного цилиндра (если разделить его на части), который обладает поперечным сечением. Диаметр его также можно определить, но сложилось так, что указывают именно площадь

Измерение сечения проводников по диаметру

Существует несколько способов, как определить сечение кабеля или провода. Разница при определении площади сечения проводов и кабелей будет заключаться в том, что в кабельной продукции требуется производить замеры каждой жилы в отдельности и суммировать показатели.

Для информации. Измеряя рассматриваемый параметр контрольно-измерительными приборами, необходимо изначально произвести замеры диаметров токопроводящих элементов, желательно сняв изоляционный слой.

Приборы и процесс измерения

Приборами для замеров могут выступать штангенциркуль или микрометр. Используют обычно механические приспособления, но могут применяться и электронные аналоги с цифровым экраном.

Внешний вид механического микрометра

В основном, замеряют диаметр проводов и кабелей посредством штангенциркуля, так как он найдется в почти каждом домашнем хозяйстве. Им также можно замерять диаметр проводов в работающей сети, например, розетке или щитовом устройстве.

Замер диаметра механическим штангенциркулем

Определение сечения провода по диаметру совершается по следующей формуле:

S = (3,14/4)*D2, где D – диаметр провода.

Если кабель в своем составе имеет больше одной жилы, то необходимо произвести замеры диаметра и расчет сечения по вышеприведенной формуле для каждой из них, после объединить полученный результат, воспользовавшись формулой:

Sобщ= S1 + S2 +…+Sn, где:

  • Sобщ – общая площадь поперечного сечения;
  • S1, S2, …, Sn – поперечные сечения каждой жилы.

На заметку. Для точности полученного результата рекомендуется производить измерения не менее трех раз, поворачивая проводник в разные стороны. Результатом будет являться средний показатель.

Определение диаметра жилки цифровым штангенциркулем

При отсутствии штангенциркуля или микрометра диаметр проводника можно определить посредством обычной линейки. Для этого необходимо выполнить следующие манипуляции:

  1. Очистить изоляционный слой жилы;
  2. Накрутить плотно друг другу витки вокруг карандаша (их должно быть не менее 15-17 шт.);
  3. Произвести замер длины намотки;
  4. Разделить полученную величину на количество витков.

Важно! Если витки не будут уложены на карандаш равномерно с зазорами, то точность полученных результатов измерения сечения кабеля по диаметру будет под сомнением. Для повышения точности замеров рекомендуется производить замеры с разных сторон. Толстые жилы навить на простой карандаш будет сложно, поэтому лучше прибегнуть к штангенциркулю

Толстые жилы навить на простой карандаш будет сложно, поэтому лучше прибегнуть к штангенциркулю.

После измерения диаметра площадь сечения провода рассчитывается по вышеописанной формуле или определяется по специальной таблице, где каждому диаметру соответствует величина площади сечения.

Измерение диметра проводникового изделия посредством линейки

Диаметр провода, имеющего в своем составе сверхтонкие жилы, лучше замерять микрометром, так как штангенциркуль может с легкостью проломить ее.

Определить сечение кабеля по диаметру проще всего посредством таблицы, которая приведена ниже.

Таблица соответствия диаметра провода сечению провода

Диаметр проводникового элемента, мм Площадь сечения проводникового элемента, мм2
0,8 0,5
0,9 0,63
1 0,75
1,1 0,95
1,2 1,13
1,3 1,33
1,4 1,53
1,5 1,77
1,6 2
1,8 2,54
2 3,14
2,2 3,8
2,3 4,15
2,5 4,91
2,6 5,31
2,8 6,15
3 7,06
3,2 7,99
3,4 9,02
3,6 10,11
4 12,48
4,5 15,79

Это интересно: Как сделать проектор своими руками в домашних условиях: излагаем обстоятельно

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector