Smd резистор 103 номинал
Содержание:
- Как произвести замену пола в бане и увеличить срок его службы
- Основная суть статьи
- Маркировка SMD резисторов – обозначения и расшифровка
- Для чего нужны опознавательные признаки
- Размеры и обозначения
- Какие бывают мангалы
- Трехзначный код резисторов со сопротивлением менее 10 Ом
- Маркировка SMD резисторов
- Расчет гасящего резистора
- SMD резисторы — маркировка номинальных значений SMD резисторов
- Как себя проверить
- Мощность резистора по размеру
- Цифровые маркировки
Как произвести замену пола в бане и увеличить срок его службы
Основная суть статьи
Маркировка SMD резисторов – обозначения и расшифровка
Термин «SMD-резистор» появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип-резисторы, как их еще называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты, чем аналогичные проволочные резисторы. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.
На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств.
Внешний вид SMD-резисторов
Размеры и форма SMD-резисторов регламентируются нормативным документом JEDEC, где приводятся рекомендуемые типоразмеры. Обычно на корпусе нанесена маркировка SMD-резисторов, содержащая данные о габаритах резистора. К примеру, цифровой код 0804 предполагает длину, равную 0,08 дюймам, ширину – 0,04 дюйма.
Если перевести такую кодировку в систему СИ, то данный SMD-резистор будет обозначаться как 2010. Из этой маркировки видно, что длина составляет 2,0 мм, а ширина 1,0 мм (1 дюйм равен 2,54 мм).
Требуемая мощность рассеивания определяет размер чипа. Поскольку на SMD-резистор, имеющий очень маленький габарит, не представляется возможным разместить стандартную маркировку, которая имеется у обычных проволочных резистивных сопротивлений, разработана кодовая система обозначений. Для удобства производители условно разделили чип-резисторы по способу маркировки на три типа:
- маркировка из трех цифр;
- маркировка из четырех цифр;
- маркировка из двух цифр и буквы.
Последний вариант применяется для резисторов повышенной точности с допуском 1% (прецизионных). Очень маленький размер не позволяет размещать на них маркировку с длинными кодами. Для них разработан стандарт EIA-96
Для маркировки маленьких сопротивлений (менее 10 Ом) используется латинская буква «R» Например: 0R1 = 0,1 Ом и 0R05 = 0,05 Ом.
Маркировка SMD-резисторов
Существуют номиналы повышенной точности (так называемые прецизионные).
Маркировка прецизионных SMD-резисторов
Пример подбора нужного резистора: если указана цифра 232, то необходимо 23 умножить на 10 во второй степени. Получается сопротивление 2,3 кОм (23 x 102 = 2 300 Ом = 23 кОм). Аналогично рассчитываются чипы второго типа.
Калькулятор обозначений SMD-резисторов
Расшифровка обозначения чип-резисторов – специфичное занятие. Вычислить необходимую величину можно, пользуясь старыми проверенными способами, проделав несколько арифметических действий. Но прогресс не стоит на месте, и то же самое можно выполнить при помощи различных сайтов.
Калькулятор SMD-резисторов поможет подобрать нужный типоразмер, разобраться с кодами, а также избавит от изнурительных расчетов. Кроме того, есть специальная программа «Резистор». Кликнув пару раз мышкой, можно найти нужную информацию.
Для чего нужны опознавательные признаки
Уточнить причины появления цветовой кодировки резисторов поможет изучение типичного компонента малой мощности (0,05 или 0,125 Вт). При длине 3-5 мм диаметр элемента составляет 0,8-1,2 мм.
Цветовая маркировка диодов
Для представления информации в сокращенном виде можно воспользоваться «классической» кодировкой. Номинал 2 200 кОм преобразуют в «2К2». Здесь «К» обозначает не только приставку-множитель «кило-», но и выполняет функцию разделяющей запятой – 2,2 кОм.
На изогнутую поверхность с ограниченной площадью сложно наносить четкие цифровые и буквенные обозначения. Малейший дефект усложняет корректную и быструю идентификацию. Достаточно сделать небольшую царапину при демонтаже, чтобы создать дополнительные трудности.
Цветовая маркировка отличается следующими преимуществами:
- простота и технологичность процесса нанесения;
- возможность представления необходимой информации в полном объеме;
- удобство считывания данных с точной идентификацией отдельных элементов обозначений;
- высокая устойчивость к неблагоприятным внешним воздействиям.
Для правильного изучения данной темы необходимо уточнить определения основных технических параметров пассивных элементов. Номинальное электрическое сопротивление обозначают в омах и производных кратных величинах с применением соответствующей приставки. Килоомы – это множитель 10 в третьей степени или 1 000.
Минимальным влиянием реактивных компонентов сопротивления (индуктивных и емкостных) пренебрегают при создании типовых электротехнических устройств. Поэтому такие показатели не отображают в кодированной цифровой маркировке. Эти и другие дополнительные данные производители указывают в сопроводительной документации на прецизионные изделия. Они необходимы для точных расчетов аппаратуры, которая обрабатывает ВЧ и СВЧ сигналы.
Рассеиваемая мощность – важный параметр. Его необходимо учитывать для подбора изделия, соответствующего определенному максимальному току в цепи. При ошибочном расчете чрезмерный нагрев разрушит резистор.
Следует подчеркнуть! Действительное значение электрического сопротивления зависит от температуры проводника. Тем не менее, цветовой индикацией мощность не обозначают.
Возможное отклонение номинала (допуск) подбирают с учетом исходных требований к радиотехнической конструкции. Значение этого параметра определяют по цвету или количеству полос. Ниже представлены соответствующие методики расшифровки.
Дополнительными маркерами отмечают:
- наработку на отказ;
- уровень зависимости сопротивления от изменения температуры;
- технологию производства.
Размеры и обозначения
SMD-резисторы имеют компактные размеры. Самый маленький типоразмер может быть всего 0,4×0,2 мм. Поэтому от стандартной цветовой маркировки решили отказаться. Вместо неё сейчас используется три разных типа обозначений: 3 цифры, 4 цифры и 2 цифры и буква. Но логика распознавания элемента у них одна.
3 и 4 цифры
Всё довольно просто и логично — есть три цифры. Две первые — мантисса, третья — степень, в которую нужно возвести число 10 для получения множителя. Перемножив это всё, получим итоговое сопротивление.
Чёрные «детальки» на плате — SMD-резисторыФОТО: blogspot.com
Например, на резисторе стоит 312. 31 — основание, 2 — степень числа 10. В итоге, получается нехитрое выражение 31·10² или 31·100 = 3100 Ом. На самом деле, чтобы не проводить всех этих математических операций, можно просто запомнить, что к первым двум цифрам нужно прибавить указанное третьей цифрой количество нулей. То есть, к 31 просто добавить два нуля.
Маркировка с четырёхзначными числами не отличается методом расшифровки. Просто применяются они для резисторов с точностью в 1%. Например, 7920 будет обозначать всего 792 Ом, так как 10° = 1, и после умножения получаем 792. Или используя более простую методику — после 792 нужно добавить 0 нулей, то есть ни одного.
Цифры и буквы в обозначениях
Тут всё немного усложняется. Во-первых, встречается два вида обозначений: сначала цифры, потом буква и наоборот. Первый используется для маркировки элементов с точностью 1% из номинального ряда Е96. Второй встречается на компонентах с точностью 2%, 5% и 10% из номинальных рядов Е12 и Е24.
Обозначение с двумя цифрами и буквой чем-то похоже по логике на простые цифровые обозначения. Но, так как номиналы сопротивлений берутся из номинального ряда Е96, то закономерности в символах обнаружить не удастся, понадобится таблица. Итак, первые две цифры обозначают код, согласно которому в таблице нужно найти соответствующую мантиссу. Буква — это степень десяти. Вариантов здесь немного и есть хоть какая-то логика: S или Y дают 10־², R или X – 10־¹. Затем по нарастанию: А — 10°или 1, B – 10¹, C – 10² и так далее.
Таблица соответствия цифровых кодов и мантиссФОТО: blogspot.com
Например, имеем резистор 49R. Смотрим в таблицу — получаем мантиссу 316. Литера R говорит нам, что степень десяти равна -1. То есть, нужно не умножать на 10, а, наоборот — разделить. В итоге, получаем значение 31,6 Ом.
Второй вариант цифро-буквенных обозначений подчиняется тому же принципу, только здесь в цифровом коде ещё зашифрована точность резистора.
Таблица соответствия цифровых кодов и мантиссФОТО: blogspot.com
Как видно, способ маркировки только цифрами гораздо удобнее и проще, хотя и не позволяет обозначить некоторые номиналы резисторов.
Watch this video on YouTube
Какие бывают мангалы
Трехзначный код резисторов со сопротивлением менее 10 Ом
В описанной выше системе минимальное значение сопротивления, которое мы можем кодировать, составляет 10 Ом, что эквивалентно коду «100» (10 + нет нуля).
При значениях сопротивления менее 10 Ом необходимо найти другое решение, потому что вместо добавления нулей мы должны разделить значение первых двух цифр. Чтобы решить проблему, производители используют букву «R», которая эквивалентна запятой.
Например, сопротивление с кодом 4R7 эквивалентно 4,7 Ом, потому что мы заменяем «R» запятой. Если значение сопротивления меньше 1 Ом, мы используем ту же систему, помещая R в качестве первого номера. Например, R22 равно 0,22 Ом. Как вы можете видеть, это довольно легко.
Маркировка SMD резисторов
Силовые резисторы с проволочной обмоткой бывают самых разных конструкций и типов: от стандартного меньшего алюминиевого корпуса с 25-ваттным радиатором, установленного на радиаторе, как мы видели ранее, до больших трубчатых керамических или фарфоровых силовых резисторов мощностью 1000 Вт, используемых для нагревательных элементов.
Значение сопротивления проволочных резисторов очень низкое (низкие омические значения) по сравнению с углеродной или металлической пленкой. Диапазон сопротивления силового резистора колеблется от менее 1 Ом (R005) до всего 100 кОм, поскольку для больших значений сопротивления потребуется провод с тонкой калибровкой, который может легко выйти из строя.
Резисторы с низким омическим сопротивлением и низким значением мощности, как правило, используются для датчиков тока, по закону Ома ток, протекающий через сопротивление, вызывает падение напряжения на нем.
Это напряжение может быть измерено, чтобы определить значение тока, протекающего в цепи. Этот тип резистора используется в испытательном измерительном оборудовании и контролируемых источниках питания.
Силовые резисторы большего размера с проволочной обмоткой изготовлены из коррозионностойкой проволоки, намотанной на формирователь из фарфора или керамического сердечника, и обычно используются для рассеивания высоких пусковых токов, например, возникающих в цепях управления электродвигателем, электромагнитом или элеватором / краном и тормозных цепях двигателя.
Обычно эти типы резисторов имеют стандартную номинальную мощность до 500 Вт и, как правило, соединяются вместе, образуя так называемые «банки сопротивления».
Еще одна полезная особенность силовых резисторов с проволочной обмоткой заключается в использовании нагревательных элементов, таких как те, которые используются для электрического огня, тостера, утюгов и т. Д. В этом типе применения значение мощности сопротивления используется для производства тепла, а тип проволоки из сплава сопротивления используется, как правило, из никель-хрома (нихрома), допускающего температуру до 1200 o C.
Все резисторы, будь то углерод, металлическая пленка или проволока, подчиняются закону Ома при расчете значения их максимальной мощности (мощности). Стоит также отметить, что, когда два резистора соединены параллельно, их общая мощность увеличивается. Если оба резистора имеют одинаковое значение и одинаковую номинальную мощность, общая номинальная мощность удваивается.
Расчет гасящего резистора
В схемах аппаратуры связи часто возникает необходимость подать на потребитель меньшее напряжение, чем дает источник. В этом случае последовательно с основным потребителем включают дополнительное сопротивление, на котором гасится избыток напряжения источника. В видеоролике представлен простой расчет резистора для светодиода.
Такое сопротивление называется гасящим. Напряжение источника тока распределяется по участкам последовательной цепи прямо пропорционально сопротивлениям этих участков. Рассмотрим схему включения гасящего сопротивления:
- Полезной нагрузкой в этой цепи является лампочка накаливания, рассчитанная на нормальную работу при величине напряжения Uл= 80 в и тока I =20 ма.
- Напряжение на зажимах источника тока U=120 в больше Uл, поэтому если подключить лампочку непосредственно к источнику, то через нее пройдет ток, превышающий нормальный, и она перегорит.
- Чтобы этого не случилось, последовательно с лампочкой включено гасящее сопротивление R гас.
Схема включения гасящего сопротивления резистора.
Расчет величины гасящего сопротивления при заданных значениях тока и напряжения потребителя сводится к следующему:
– определяется величина напряжения, которое должно быть погашено:
Uгас = Uист – Uпотр,
Uгас = 120 – 80 = 40в
определяется величина гасящего сопротивления
Rгас = Uгас / I
Rгас = 40 / 0,020 = 2000ом = 2 ком
Далее необходимо рассчитать мощность, выделяемую на гасящем сопротивлении по формуле
P = I2 * Rгас
P = 0,0202 * 2000 = 0,0004 * 2000 = 0,8вт
Зная величину сопротивления и расходуемую мощность, выбирают тип гасящего сопротивления
SMD резисторы — маркировка номинальных значений SMD резисторов
SMD резисторы — маркировка чип-резисторов
SMD резисторы – маркировка которых интересует многих радиолюбителей. Данные резисторы изготавливаются в миниатюрных корпусах, сделанных как правило из керамики и предназначенные для поверхностного монтажа. Этот элемент является самым распространенным компонентом в современных радиоэлектронных схемах.
Различные компании, производящие SMD резисторы, делают много всевозможных модификаций своей продукции, кодовые обозначения, которых имеют отличие от других. В связи с этим, электронщикам, которым приходится часто выполнять ремонт электронной техники или заниматься сборкой печатных плат, нужно четко знать кодовые обозначения резисторов.
Предназначение чип-резисторов
Основная функция резисторов в схеме — это токоограничение в конкретной части электрического тракта. Один из ближайших примеров, которым можно показать резистор в действии — это включение сопротивления в питающую цепь LED-диодов либо в эмиттерную цепь биполярного транзистора установленного в усиливающем каскаде. Приведенная ниже таблица окажет вам существенную помощь в расшифровке кодовых обозначений.
Таблица расшифровки номинальных значений SMD резисторов
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
R10 | 0.1 Ом | 1R0 | 1 Ом | 100 | 10 Ом | 101 | 100 Ом |
R11 | 0.11 Ом | 1R1 | 1.1 Ом | 110 | 11 Ом | 111 | 110 Ом |
R12 | 0.12 Ом | 1R2 | 1.2 Ом | 120 | 12 Ом | 121 | 120 Ом |
R13 | 0.13 Ом | 1R3 | 1.3 Ом | 130 | 13 Ом | 131 | 130 Ом |
R15 | 0.15 Ом | 1R5 | 1.5 Ом | 150 | 15 Ом | 151 | 150 Ом |
R16 | 0.16 Ом | 1R6 | 1.6 Ом | 160 | 16 Ом | 161 | 160 Ом |
R18 | 0.18 Ом | 1R8 | 1.8 Ом | 180 | 18 Ом | 181 | 180 Ом |
R20 | 0.2 Ом | 2R0 | 2 Ом | 200 | 20 Ом | 201 | 200 Ом |
R22 | 0.22 Ом | 2R2 | 2.2 Ом | 220 | 22 Ом | 221 | 220 Ом |
R24 | 0.24 Ом | 2R4 | 2.4 Ом | 240 | 24 Ом | 241 | 240 Ом |
R27 | 0.27 Ом | 2R7 | 2.7 Ом | 270 | 27 Ом | 271 | 270 Ом |
R30 | 0.3 Ом | 3R0 | 3 Ом | 300 | 30 Ом | 301 | 300 Ом |
R33 | 0.33 Ом | 3R3 | 3.3 Ом | 330 | 33 Ом | 331 | 330 Ом |
R36 | 0.36 Ом | 3R6 | 3.6 Ом | 360 | 36 Ом | 361 | 360 Ом |
R39 | 0.39 Ом | 3R9 | 3.9 Ом | 390 | 39 Ом | 391 | 390 Ом |
R43 | 0.43 Ом | 4R3 | 4.3 Ом | 430 | 43 Ом | 431 | 430 Ом |
R47 | 0.47 Ом | 4R7 | 4.7 Ом | 470 | 47 Ом | 471 | 470 Ом |
R51 | 0.51 Ом | 5R1 | 5.1 Ом | 510 | 51 Ом | 511 | 510 Ом |
R56 | 0.56 Ом | 5R6 | 5.6 Ом | 560 | 56 Ом | 561 | 560 Ом |
R62 | 0.62 Ом | 6R2 | 6.2 Ом | 620 | 62 Ом | 621 | 620 Ом |
R68 | 0.68 Ом | 6R8 | 6.8 Ом | 680 | 68 Ом | 681 | 680 Ом |
R75 | 0.75 Ом | 7R5 | 7.5 Ом | 750 | 75 Ом | 751 | 750 Ом |
R82 | 0.82 Ом | 8R2 | 8.2 Ом | 820 | 82 Ом | 821 | 820 Ом |
R91 | 0.91 Ом | 9R1 | 9.1 Ом | 910 | 91 Ом | 911 | 910 Ом |
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
102 | 1 кОм | 103 | 10 кОм | 104 | 100 кОм | 105 | 1 МОм |
112 | 1.1 кОм | 113 | 11 кОм | 114 | 110 кОм | 115 | 1.1 МОм |
122 | 1.2 кОм | 123 | 12 кОм | 124 | 120 кОм | 125 | 1.2 МОм |
132 | 1.3 кОм | 133 | 13 кОм | 134 | 130 кОм | 135 | 1.3 МОм |
152 | 1.5 кОм | 153 | 15 кОм | 154 | 150 кОм | 155 | 1.5 МОм |
162 | 1.6 кОм | 163 | 16 кОм | 164 | 160 кОм | 165 | 1.6 МОм |
182 | 1.8 кОм | 183 | 18 кОм | 184 | 180 кОм | 185 | 1.8 МОм |
202 | 2 кОм | 203 | 20 кОм | 204 | 200 кОм | 205 | 2 МОм |
222 | 2.2 кОм | 223 | 22 кОм | 224 | 220 кОм | 225 | 2.2 МОм |
242 | 2.4 кОм | 243 | 24 кОм | 244 | 240 кОм | 245 | 2.4 МОм |
272 | 2.7 кОм | 273 | 27 кОм | 274 | 270 кОм | 275 | 2.7 МОм |
302 | 3 кОм | 303 | 30 кОм | 304 | 300 кОм | 305 | 3 МОм |
332 | 3.3 кОм | 333 | 33 кОм | 334 | 330 кОм | 335 | 3.3 МОм |
362 | 3.6 кОм | 363 | 36 кОм | 364 | 360 кОм | 365 | 3.6 МОм |
392 | 3.9 кОм | 393 | 39 кОм | 394 | 390 кОм | 395 | 3.9 МОм |
432 | 4.3 кОм | 433 | 43 кОм | 434 | 430 кОм | 435 | 4.3 МОм |
472 | 4.7 кОм | 473 | 47 кОм | 474 | 470 кОм | 475 | 4.7 МОм |
512 | 5.1 кОм | 513 | 51 кОм | 514 | 510 кОм | 515 | 5.1 МОм |
562 | 5.6 кОм | 563 | 56 кОм | 564 | 560 кОм | 565 | 5.6 МОм |
622 | 6.2 кОм | 623 | 62 кОм | 624 | 620 кОм | 625 | 6.2 МОм |
682 | 6.8 кОм | 683 | 68 кОм | 684 | 680 кОм | 685 | 6.8 МОм |
752 | 7.5 кОм | 753 | 75 кОм | 754 | 750 кОм | 755 | 7.5 МОм |
822 | 8.2 кОм | 823 | 82 кОм | 824 | 820 кОм | 815 | 8.2 МОм |
912 | 9.1 кОм | 913 | 91 кОм | 914 | 910 кОм | 915 | 9.1 МОм |
Маркировка SMD резисторов
SMD компоненты
usilitelstabo.ru
Как себя проверить
Если в навыке расшифровки кодов вы пока неуверены, есть два способа проверить сопротивление резистора. Первый — программный, второй — при помощи мультиметра. Второй — более надежный, так как вы видите реальное положение вещей, а заодно и проверяете сопротивление элемента.
Одна из программ по расшифровке кодов резисторов «Резистор 2.2»: цветовая маркировка
Найти программу расшифровки кодов резисторов просто — по запросу выскакивает не один десяток. Они несложные, отличаются только масштабами баз данных. Не в каждой можно найти все варианты кодов, но популярные есть везде. В этих программах сначала выбирается тип кодировки (буквы или полоски), а затем вносятся все данные. То, что вы вводите отображается в специальном окошке — чтобы можно было визуально проверить правильность введенной информации. После ввода данных нажимаете кнопку, программа выдает вам номинал и допуск. Сравниваете с тем, что получилось у вас.
Проверяем сопротивление при помощи мультиметра
Проверить насколько правильно вы по кодировке определили сопротивление резистора можно и при помощи мультиметра. Для этого его выставляем в режим «изменение сопротивлений». Диапазон подбираем в зависимости от того, что насчитали. Один щуп прикладываем к одному выводу, второй — к другому. На экране высвечивается сопротивление. Оно может отличаться от высчитанного. Разница зависит от допуска. Чем больше допуск, тем больше может быть разница. Но в любом случае показания должны быть сравнимы с найденным номиналом. Подробности смотрите в видео.
Мощность резистора по размеру
Внезапно, возникла проблема: на резисторах мощностью до 2 Вт не указана их мощность. А всё потому, что их мощность определяется размером:
Таблица размер-мощность аксиальных (цилиндрических) резисторов. Начиная с 1 Вт и выше мощность резистора на схемах обозначается римскими цифрами (I, II, III, V и т. д.)
Но, всё не так однозначно. Бывают резисторы одинаковой мощности разного размера и разной мощности одинакового размера:
Аксиальные (с осевыми выводами) резисторы с внезапной маркировкой на них мощности ваттах (W)
Мощность чип-резисторов тоже связана с их размером:
Правая часть второй колонки (код типоразмера, состоящий из 4-х цифр) — кодирует длину (первые две цифры) и ширину (вторые две цифры) детали в 1/100 долях дюйма (точнее в 1/1000, а между двумя цифрами подразумевается десятичная точка)
Значения мощности в третьей колонке указаны при температуре 70°С и это некие «стандартные» значения, которые являются «круглыми» долями одного ватта: 0.031 — это 1/32 ватта, 0.05 — 1/20, 0.063 — 1/16 и т. д. Также у разных производителей существуют резисторы такого же размера повышенной мощности и пониженной .
Что такое мощность резистора?
Вообще, мощность (измеряемая в ваттах) — это энергия (измеряемая в джоулях), передаваемая (или потребляемая, или отдаваемая) в секунду.
Энергия электрического тока в проводнике состоит из кинетической энергии скорости электронов и их количества (сила тока, I), и потенциальной энергии сжатости электронного газа (напряжение, U).
Мощность электрического тока, проходящего через резистор, определяется по формуле P=U·I=R·I2, где U — падение напряжения на выводах резистора, R — заявленное сопротивление резистора.
Резистор рассеивает это тепло в окружающую среду (воздух), спасаясь от перегрева, и чем быстрее он это делает (чем больше джоулей тепла в секунду отдаёт во вне) тем больше его мощность и тем более мощный ток он может через себя пропустить.
Соответственно, резистор тем мощнее, чем больше поверхность его тушки (или радиатора, к которому он привинчен), чем холоднее и плотнее окружающая среда (воздух, вода, масло), чем большую температуру разогрева себя, любимого, может выдержать резистор.
Так вот, мощность резистора — это максимальная мощность тока, проходящего через резистор, которую резистор выдерживает бесконечно долго, не ломаясь от перегрева и не меняя слишком сильно своего исходного (номинального; при 25°С) сопротивления.
Как же может сломаться резистор, если он сделан из таких материалов как графит (температура плавления >3800°С), керамика (>2800°С), сплава «константан» (=1260°С), нихрома, … ? Ломаются резисторы обычно путём трескания напополам их тщедушного тельца или отваливания (отгорания) от тела колпачков-выводов на концах. Обугливание краски
Мощный резистор, целый, но обуглилась краска на нём, так что пропала маркировка
поломкой не считается. Но чтобы не терять маркировку, в последнее время стало модно запихивать резистор мощностью ≥ 3 Вт в керамический параллелепипед, который снаружи выглядит как новый даже после многих лет напряжённой работы-разогрева резистора.
Т.к. мощный резистор сильно греется, по сути печка, нагревательный элемент, то его обычно на платах подвешивают в пространстве на длинных ножках,
Дистанцирование мощного резистора от платы
чтобы удалить от деталей на плате, особенно от и без того бодро иссыхающих со временем электролитических конденсаторов.
Цифровые маркировки
Цифровые маркировки содержат показатель (N) множителя (10 N) в качестве последней цифры, остальные две или три — мантисса сопротивления.
Номинал пассивных компонентов для поверхностного монтажа маркируется по определенным стандартам и не соответствует напрямую цифрам, нанесенным на корпус. Статья знакомит с этими стандартами и поможет Вам избежать ошибок при замене чип-компонентов.
Основой производства современных средств радиоэлектронной и вычислительной техники является технология поверхностного монтажа или SMT-технология (SMT — Surface Mount Technology). Эту технологию отличает высокая автоматизация монтажа печатных плат. Специально для SMT технологии были разработаны серии миниатюрных безвыводных электронных компонентов, которые еще называют SMD (Surface Mount Devices) компонентами или чип-компонентами. Размеры чип-компонентов стандартизованы во всем мире, как и способы их маркировки.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЧИП-РЕЗИСТОРОВ
На рис.1 представлен внешний вид чип-резисторов, а в таблицах 1,2 приведены их геометрические размеры и основные технические данные.
Типоразмеры SMD резисторов обозначаются четырехзначным числом по стандарту IEA. Обозначения самих же SMD резисторов некоторых зарубежных производителей приведены в табл.3. В нашей стране чип-резисторы также производятся (серия Р1-12).
МАРКИРОВКА ЧИП-РЕЗИСТОРОВ
Для маркировки чип-резисторов применяется несколько способов.
Способ маркировки зависит от типоразмера резистора и допуска.
Резисторы типоразмера 0402 не маркируются.
Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу (то есть номинал резистора без множителя), а последняя — показатель степени по основанию 10 для определения множителя.
При необходимости к значащим цифрам может добавляться буква R для обозначения десятичной точки. Например, маркировка 563 означает, что резистор имеет номинал 56х103 Ом = 56 кОм.
Обозначение 220 означает, что номинал резистора равен 22 Ома.
Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами, первые три из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для задания номинала резистора в Омах.
Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750х10 Ом = 7,5 кОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 (таблица 4) двумя цифрами и одной буквой.
Цифры задают код, по которому из таблицы определяют мантиссу, а буква — показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10С означает, что резистор имеет номинал 124х102 Ом = 12,4 кОм.
Литература — Журнал «Ремонт электронной техники» 2 1999:::
Самым распространённым и очень широко применяемым в электронике элементом. является резистор. Это элемент, создающий сопротивление
электрическому току. Номинальные значения зависят от класса точности. Он указывает на отклонение, от номинала, которое допускается техническими условиями. Имеются три класса точности:
- 5 %-ный ряд;
- 10 %-ный;
- 20 %- ный.
Например, если взять резистор I класса с номинальным значением сопротивления 100 кОм, то его натуральная величина находится в пределах от 95 до 105 кОм. У такого же компонента III класса точности величина будет лежать в 20%ном интервале, и равняться 80 или 120 кОм. Кто хорошо знаком с электротехникой, может вспомнить, что существуют прецизионные резисторы с 1%ным допуском.
Термин SMD резистор появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип резисторы, как их ещё называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты
, чем их проволочные аналоги. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.
На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств. В связи с тем, что имеют место небольшие размеры элементов, достигается высокая плотность монтажа
.
Основное преимущество таких элементов — это отсутствие гибких выводов, что позволяет не сверлить отверстия в печатной плате. Вместо них используются контактные площадки.