Расчет теплопотерь дома через ограждающие конструкции и инженерные коммуникации
Содержание:
- Пример расчета теплопотерь дома
- 25 нетривиальных советов, которые сделают вашу жизнь проще
- Характеристика теплозащитных свойств
- Периодичность капитального ремонта жилых домов
- Зачем нужен расчет теплопотерь дома?
- Красивые примеры
- 10. Рисунок на стене своими руками: абстрактная картина
- Наглядный пример расчётов
- Ремонт коммуникаций
- Потери тепла через внешнюю оболочку
- Океан
- Дифференцированные схемы расчёта
- Описание проекта
- Онлайн калькулятор теплопотерь дома
- Цель теплотехнического расчета
- Мы работаем со следующими брендами:
- Расчет мощности отопительного котла
- Теплопотери через потолок
- Использование в ландшафтном дизайне
- Калькулятор расчета теплопотерь
- Что такое 3Д Обои
- Автодом Monaco Coach Dynasty
- Примерное минимальное качество утепления наружных стен
- Основные факторы теплопотерь
- Разновидности теплопотерь
- Формула расчета теплопотерь частного дома
- Виды копчения
- Крыша
- Материалы из древесины, используемые при постройке дома
Пример расчета теплопотерь дома
Рассчитаем теплопотери 2-этажного дома высотой 7 м, имеющего размеры в плане 10х10 м.
Стены имеют толщину 500 мм и выстроены из теплой керамики (Кт = 0,16 Вт/м*С), снаружи утеплены минеральной ватой толщиной 50 мм (Кт = 0,04 Вт/м*С).
В доме имеется 16 окон площадью по 2,5 кв. м.
Наружная температура в самую холодную пятидневку составляет -25 градусов.
Средняя наружная температура за отопительный период — (-5) градусов.
Внутри дома требуется обеспечить температуру +23 градуса.
Потребление воды — 15 куб. м/мес.
Продолжительность отопительного периода — 6 мес.
Термическое сопротивление:
- основного материала: R1 = 0,5 / 0,16 = 3,125 кв. м*С/Вт;
- утеплителя: R2 = 0,05/0,04 = 1,25 кв. м*С/Вт.
То же для стены в целом: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м*С/Вт.
Определяем площадь стен: А = 10 х 4 х 7 – 16 х 2,5 = 240 кв. м.
Теплопотери через стены составят:
Qс = (240 / 4.375) * (23 – (-25)) = 2633 Вт.
Аналогичным образом рассчитываются теплопотери через крышу, пол, фундамент, окна и входную дверь, после чего все полученные значения суммируются. Термическое сопротивление дверей и окон производители обычно указывают в паспорте на изделие.
Обратите внимание на то, что при расчете теплопотерь через пол и фундамент (при наличии подвала) разность температур dT будет намного меньшей, так как при ее вычислении учитывается температура не воздуха, а грунта, который зимой является гораздо более теплым.
Теплопотери через вентиляцию
Определяем объем воздуха в помещении (для упрощения расчета толщина стен не учитывается):
V = 10х10х7 = 700 куб. м.
Принимая кратность воздухообмена Кв = 1, определяем теплопотери:
Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-25)) = 11300 Вт.
Вентиляция в доме
Теплопотери через канализацию
С учетом того, что жильцы потребляют 15 куб. м воды в месяц, а расчетный период составляет 6 мес., теплопотери через канализацию составят:
Qк = (15 * 6 * 1000 * 4183 * 23) / 3 600 000 = 2405 кВт*ч
Оценка полного объема энергозатрат
Для оценки всего объема энергозатрат за отопительный период необходимо пересчитать теплопотери через вентиляцию и ограждающие конструкции с учетом средней температуры, то есть dT составит не 48, а только 28 градусов.
Тогда средняя мощность потерь через стены составят:
Qс = (240 / 4.375) * (23 – (-5)) = 1536 Вт.
Предположим, что через крышу, пол, окна и двери дополнительно теряется в среднем 800 Вт, тогда совокупная средняя мощность теплопотерь через ограждающие конструкции составит Q = 1536 + 800 = 2336 Вт.
Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-5)) =6592 Вт.
Тогда за весь период на отопление придется затратить:
W = ((2336 + 6592)*24*183)/1000 = 39211 кВт*ч.
К этой величине нужно прибавить 2405 кВт*ч потерь через канализацию, так что общий объем энергозатрат за отопительный период составит 41616 кВт*ч.
Если в качестве энергоносителя используется только газ, из 1-го куб. м которого удается получить 9,45 кВт*ч тепла, то его понадобится 41616 / 9,45 = 4404 куб. м.
25 нетривиальных советов, которые сделают вашу жизнь проще
Характеристика теплозащитных свойств
Теплозащитные свойства стен напрямую зависят от теплопроводности материалов, которыми они были утеплены. Уровень теплопроводности равен объему тепла, проходящему за один час через один квадратный метр защитного материала толщиной в метр.
Самая низкая теплопроводность – у минеральной ваты, угольной ваты, пенополиуретана и других подобных материалов.
Но выбор утеплителя обуславливается и материалом возведения стен. Например, для деревянных домов подойдет минеральная или угольная вата. Обусловлено это тем, что они оказывают большое сопротивление холоду, но при этом позволяют дышать конструкции.
Для утепления кирпичных стен вполне подойдут пенопласт, пеноплекс, пенополиуретан и другие похожие по характеристикам утеплители.
Периодичность капитального ремонта жилых домов
Периодичность капитального ремонта жилых домов зависит, прежде всего, от материала из которого выполнены стены, несущие конструкции, фундамент. У различных материалов отличаться будет и периодичность проведения осмотра, текущих, капитальных работ в частных сооружениях.
Государственными стандартами предусмотрены несколько групп частных зданий, в соответствии с материалами, из которых они возведены. Существует шесть групп частных сооружений, различающихся сроком службы, и для каждой из них предусмотрен свой срок проведения осмотров, ремонта:
- Здания из камня, с каменными же или кирпичными стенами, перекрытиями, железобетонными конструкциями – капитальные процедуры раз в 30 лет.
- Аналогичные вышеперечисленным материалы с более тонкими стенами (2 – 2,5 кирпича) меньшей капитальности – раз в 30 лет.
- Каменные стены, возможно с применением ракушечника, шлакоблока, облегченные конструкции – ремонт раз в 24 года.
- Частные дома из дерева и бруса, с деревянными перекрытиями, ленточным фундаментом – ремонт раз в 18 лет.
- Сборные конструкции частных зданий – каркасные, щитовые, с применением глины, дерева – раз в 6 лет.
- Облегченные каркасные конструкции – раз в 6 лет.
К тому же, капитальные работы могут проводиться при необходимости, если частное сооружение находится в очевидно неудовлетворительном состоянии. Тогда приглашается экспертная комиссия для осмотра. По его итогам выносится заключение о необходимости проведения капитальных действий. Результаты осмотра оформляются специальным документом – дефектным актом. В нем описываются все подлежащие устранению и исправлению моменты.
Зачем нужен расчет теплопотерь дома?
Расчет теплопотерь дома – это учет всех составляющих, влияющих на потери тепла:
- Внешняя среда;
- Внутренняя составляющая.
Особенно актуально знать потери тепа в холодное время года. Решающим фактором здесь становится разность температур между внешней и внутренней средой. Потери тепла в зависимости от строительного материала необходимо рассчитать перед постройкой здания. Различные материалы характеризуются разной теплопроводностью. Дом, построенный из кирпича и бруса, по-разному задерживают тепло, и, соответственно для них требуется различный расход топлива на обогрев.
Очень большое влияние на сохранение тепла в помещении оказывает площадь. Недаром в Сибири бани строят маленькими, с низкими потолками.
Так же одним из факторов, влияющих на потерю тепла в помещении, является качественная теплоизоляция. Теплоизоляция, выполненная из некачественных материалов или посаженная на неправильный герметик (клей), будет только ухудшать ситуацию. В полостях такого материала может скапливаться вода. А, как известно, вода хорошо проводит тепло и не сохраняет его.
Общая потеря тепла складывается из всех составляющих:
Q=Qстен+Qокон+Qпола+Qкровли Qвытяжных систем
Рассчитать теплопотерю можно воспользовавшись он-лайн калькулятором. Здесь мы рассмотрим, как рассчитать теплопотери дома, учитывая основные факторы
Расчет теплопотерь дома
Красивые примеры
10. Рисунок на стене своими руками: абстрактная картина
Наглядный пример расчётов
Для определения теплопотерь вычисляют величину для каждой комнаты в отдельности, потом их складывают. Вот схема последовательности вычислений для одной комнаты:
- Вычисляют площадь окна или окон на северной стене.
- Вычисляют площадь северной стены. Для этого умножают её наружную высоту на ширину. Ширину определяют до середины смежной стены или до её конца, если она крайняя. Отнимают от этой площади площадь окон, расположенных на стене.
- Вычисляют термическое сопротивление каждого окна.
- Вычисляют показания для стены термического сопротивления. Для этого просчитывают показания для каждого слоя конструкции, а потом их складывают.
- Подставляют все данные в формулу для вычисления теплопотерь стены. Добавляют из таблицы дополнительных теплопотерь коэффициент для северной стороны.
- Также вычисляют теплопотери окон на этой стене.
- Вычисляют теплопотери остальных стен по той же схеме. У внутренних стен показания внутренней и внешней температур обычно равны. За внешнюю температуру берутся показания за стеной.
- Вычисляют теплопотери потолка. Учитывают, что внутренняя температура на чердаке может отличаться от внешней температуры, поэтому берут для формулы расчёта показатели температуры за перекрытием.
- По тому же принципу вычисляют теплопотери через пол комнаты.
- Складывают все данные и получают расход энергии через ограждения.
- Вычисляют объём комнаты, перемножив её высоту, длину и ширину.
- Вычисляют расход энергии на обогрев вентиляционного воздуха, подставив данные в формулу.
- Складывают энергию, потраченную на ограждения и вентиляцию. Получают конечный результат.
- По той же схеме вычисляют все комнаты и помещения здания и находят общую сумму всех показателей. Полученная величина будет наиболее точным мерилом теплопотерь всего дома.
Ремонт коммуникаций
Потери тепла через внешнюю оболочку
Для эффективного использования энергетических ресурсов надо создать сплошную защиту объекта недвижимости с хорошими изоляционными характеристиками. Ниже приведены особенности отдельных частей зданий, которые необходимо учитывать при проектировании.
Существенные потери через конструкцию кровли заставляют уделять повышенное внимание расчету. Сложнее всего работать с деревянными элементами, форма которых нестабильна при изменении влажности (температуры)
Стены лучше утеплять снаружи, чтобы не сдвигать внутрь точку росы. Полы, как правило, изолируют сверху. Однако вполне допустимы исключения. Так, при монтаже заливного фундамента можно устанавливать соответствующую защиту снизу.
Тепловые потери через окна уменьшают многокамерными рамами. Из специальных стекол собирают пакеты с безвоздушными промежутками. Отдельно проверяют характеристики вентиляции. Доступ свежего воздуха необходим. Однако корректная регулировка таких систем при соблюдении санитарных норм поможет повысить энергетическую эффективность на 10-15%.
Океан
Дифференцированные схемы расчёта
Для правильных вычислений надо учитывать специфику типовых компонентов строений. Потери в стенах рассчитывают по общей площади с учетом сопротивления (теплового) каждого слоя. Внутри помещений поддерживают необходимую температуру. Проверяют несколько контрольных точек с учетом изменения сезонных, дневных и ночных внешних условий. Одновременно оценивают размещение точки росы. Следует не забывать о существенном влиянии ветровых нагрузок, особенностях режима проветривания. Над перекрытиями находятся верхние этажи, чердак. Соответственно, при общем одинаковом подходе некоторые негативные внешние воздействия можно исключить.
К сведению. Специалисты рекомендуют делать небольшой запас (добавить ≈10%) при выборе уровня влажности и температуры в комнате. Такой подход поможет учесть экстремальные условия (потребности) в процессе эксплуатации.
Расчетные параметры для оконных (дверных) блоков приводят производители в сопроводительной документации. Для повышения точности следует учитывать изоляционные характеристики откосов, узлов примыкания рам к стенам.
Пол в центральной части теплее, по сравнению с периметром. Влияние оказывают вентилируемый подвал, дополнительная изоляция фундамента. Применяют зонирование, которое учитывает особенности отдельных площадей.
Описание проекта
Онлайн калькулятор теплопотерь дома
Утечка тепла происходит через всевозможные щели, во время проветривания, материалы, входящие в состав каждой конструкции дома (здесь имеется в виду сопротивление теплопередачи). Также, чтобы посчитать теплопотери, нужно знать разницу показаний домашнего и уличного термометра, обстановку с ветрами и солнечной радиацией, расположение здания относительно сторон света и различных водоемов.
Самостоятельно произвести вычисления будет не просто и займет много времени. Здесь потребуется поиск таблиц с постоянными значениями и определение состава всех конструкций дома включая толщину каждого слоя. Это без учета различного рода неисправностей. Для программного вычисления введите название города для минусовых и желаемую температуру. Далее заполните пункты по разделам:
- Стены. Имеется вентилируемый зазор на фасаде, его общая площадь. Также учитываются состав и толщина каждого слоя несущих конструкций.
- Окна. Вид остекления, количество и размеры проемов.
- Потолок. Информация о том, что расположено над перекрытием, площадь, состав и толщина материалов.
- Пол. Аналогичные данные.
- Инфильтрация. Здесь нужна только общая площадь жилого пространства.
Калькулятор выдает приблизительные ориентировочные результаты, поэтому их рекомендуется все же проверять экспериментально. В программу невозможно ввести данные о полноценном состоянии конструкций. Например, по разным причинам внутри стен может образоваться конденсат, пол или потолок отсыревать периодически. А влага заметно увеличивает теплопроводность материалов.
Цель теплотехнического расчета
От теплотехнических особенностей капитальных ограждений здания зависит многое. Это и влажность конструктивных элементов, и температурные показатели, которые влияют на наличие или отсутствие конденсата на межкомнатных перегородках и перекрытиях.
Расчет покажет, будут ли поддерживаться стабильные температурные и влажностные характеристики при плюсовой и минусовой температуре. В перечень этих характеристик входит и такой показатель, как количество тепла, теряющегося ограждающими конструкциями строения в холодный период.
Нельзя начинать проектирование, не имея всех этих данных. Опираясь на них, выбирают толщину стен и перекрытий, последовательность слоев.
По регламенту ГОСТ 30494-96 температурные значения внутри помещений. В среднем она равна 21⁰. При этом относительная влажность обязана пребывать в комфортных рамках, а это в среднем 37%. Наибольшая скорость перемещения массы воздуха — 0,15 м/с
Теплотехнический расчет ставит перед собой цели определить:
- Идентичны ли конструкции заявленным запросам с точки зрения тепловой защиты?
- Настолько полно обеспечивается комфортный микроклимат внутри здания?
- Обеспечивается ли оптимальная тепловая защита конструкций?
Основной принцип — соблюдение баланса разности температурных показателей атмосферы внутренних конструкций ограждений и помещений. Если его не соблюдать, тепло будут поглощать эти поверхности, а внутри температура останется очень низкой.
На внутреннюю температуру не должны существенно влиять изменения теплового потока. Эту характеристику называют теплоустойчивостью.
Путем выполнения теплового расчета определяют оптимальные пределы (минимальный и максимальный) габаритов стен, перекрытий по толщине. Это является гарантией эксплуатации здания на протяжении длительного периода как без экстремальных промерзаний конструкций, так и перегревов.
Мы работаем со следующими брендами:
Расчет мощности отопительного котла
Котел в составе системы отопления предназначен для компенсации теплопотерь здания. А также, в случае двухконтурной системы или при оснащении котла бойлером косвенного нагрева, для согревания воды на гигиенические нужды.
Вычислив суточные потери тепла и расход теплой воды «на канализацию», можно точно определить необходимую мощность котла для коттеджа определенной площади и характеристик ограждающих конструкций.
Одноконтурный котел производит только нагрев теплоносителя для отопительной системы
Для определения мощности котла отопления необходимо рассчитать затраты тепловой энергии дома через фасадные стены и на нагрев сменяемой воздушной атмосферы внутренних помещений.
Требуются данные по теплопотерям в киловатт-часах за сутки – в случае условного дома, обсчитанного в качестве примера, это:
271,512 + 45,76 = 317,272 кВт·ч,
Где: 271,512 – суточные потери тепла внешними стенами; 45,76 – суточные теплопотери на нагрев приточного воздуха.
Соответственно, необходимая отопительная мощность котла будет:
317,272 : 24 (часа) = 13,22 кВт
Однако такой котел окажется под постоянно высокой нагрузкой, снижающей его срок службы. И в особенно морозные дни расчетной мощности котла будет недостаточно, поскольку при высоком перепаде температур между комнатной и уличной атмосферами резко возрастут теплопотери здания.
Поэтому выбирать котел по усредненному расчету затрат тепловой энергии не стоит – он с сильными морозами может и не справиться.
Рациональным будет увеличить требуемую мощность котлового оборудования на 20%:
13,22 · 0,2 + 13,22 = 15,86 кВт
Для вычисления требуемой мощности второго контура котла, греющего воду для мытья посуды, купания и т.п., нужно разделить месячное потребление тепла «канализационных» теплопотерь на число дней в месяце и на 24 часа:
493,82 : 30 : 24 = 0,68 кВт
По итогам расчетов оптимальная мощность котла для коттеджа-примера равна 15,86 кВт для отопительного контура и 0,68 кВт для нагревательного контура.
Теплопотери через потолок
Все тепло идет вверх. И там оно стремится выйти наружу, то есть покинуть помещение. Теплопотери через потолок в вашем доме – это одна из наибольших величин, которая характеризует уход тепла на улицу.
Толщина утеплителя на потолке должна быть в 2 раза больше толщины утеплителя в стенах. Монтируете 200 мм в стены – монтируйте 400 мм на потолок. В этом случае вам будет гарантировано максимальное теплосопротивление вашего теплового контура.
Что у нас получается? Стены 200 мм, пол 300 мм, потолок 400 мм. Считайте, что вы сэкономите на любом энергоносителе, которым будете отапливать свой дом.
Использование в ландшафтном дизайне
Разные виды дёрена могут занимать разное место в саду:
- выполнять роль забора;
- быть частью клумбы или миксбордера;
- зонировать участок;
- защищать от ветра;
- создавать тень;
- ограждать место отдыха.
Вот примеры удачного использования растений семейства кизиловых.
- Использование дерена пестролистного позволило отделить скамейки для отдыха от дорожки и одновременно защитило от ветра.
- На любых фотографиях свидина прекрасно смотрится в сочетании с хвойными и другими яркими кустарниками.
- Коуза Satomi прекрасно будет выглядеть в качестве солитера. Цвет ее соцветий желательно ничем не перебивать во время цветения.
- Дёрен пестролистный при правильном подборе сможет создать разноцветную альпийскую горку.
Дёрен белый в любое время года обратит на себя внимание
Зимой такая композиция с красноталом будет радовать своей красотой и напоминать о лете.
Еще больше информации о видах и сортах дерена смотрите в следующем видео.
Калькулятор расчета теплопотерь
Информация по назначению калькулятора
К алькулятор теплопотерь предназначен для расчета примерного количества тепла, теряемого помещением через ограждающие конструкции в единицу времени в самую холодную пятидневку выбранного населенного пункта (по актуализированной редакции СП 131.13330.2012).
Д анные расчеты являются достаточно приблизительными, так как невозможно учесть абсолютно все факторы, влияющие на тепловые потери, а полученные результаты необходимо проверять экспериментально, для подтверждения расчетов. Ошибки в конструкции стен так же могут значительным образом повлиять на фактические теплопотери. Например, образование конденсата внутри стеновой конструкции может значительно увеличить теплопроводность теплоизолирующего материала в зимний период.
Т акже на общие теплопотери влияют разность наружной и внутренней температур, солнечная радиация, атмосферные осадки, ветра и другие факторы. Моделирование процессов тепловых потерь целого здания является актуальной проблемой. Зная теплопотери здания, можно переходить к выбору мощности и вариантов системы отопления.
Д ля снижения тепловых потерь здания необходимо использовать максимально эффективные теплоизоляционные материалы
Особенно стоит уделить внимание кровле, так как именно через нее наружу уходит наибольшее количество тепла из помещения. Для поддержания комфортного внутреннего микроклимата, а так же снижения финансовых затрат на отопление, необходимо соблюдать правильный баланс утепления всех ограждающих конструкций. Примерное минимальное качество утепления наружных стен
Примерное минимальное качество утепления наружных стен
300 мм Дерево + 100 мм Полистирол/Каменная Вата
500 мм Газо- и пенобетон
300 мм Газо- и пенобетон + 100 мм Полистирол/Каменная Вата
400 мм Керамзитобетон + 100 мм Полистирол/Каменная Вата
250 мм Кирпич + 200 мм Полистирол/Каменная Вата
300 мм Дерево + 50 мм Полистирол/Каменная Вата
400 мм Газо- и пенобетон
300 мм Газо- и пенобетон + 50 мм Полистирол/Каменная Вата
200 мм Керамзитобетон + 100 мм Полистирол/Каменная Вата
250 мм Кирпич + 100 мм Полистирол/Каменная Вата
200 мм Газо- и пенобетон
100 мм Газо- и пенобетон + 120 мм Кирпич
300 мм Керамзитобетон
Общие сведения по результатам расчетов
- Т еплопотери помещения – Общее количество тепла, измеряемое в Ваттах, которое теряет расчетное помещение в единицу времени через ограждающие конструкции.
- У дельные теплопотери помещения – Теплопотери помещения отнесенные к его площади
- Т емпература воздуха наиболее холодных суток
- Т емпература воздуха наиболее холодной пятидневки
- П родолжительность отопительного сезона
- С редняя температура воздуха отопительного сезона
Калькулятор работает в тестовом режиме.
Что такое 3Д Обои
Автодом Monaco Coach Dynasty
Примерное минимальное качество утепления наружных стен
Чтобы поддерживать теплый режим в помещениях (+20°C), надо вычислить мощность подходящего отопительного оборудования. Рассчитаем параметры дома с обычной конструкцией фасада (без вентиляционной прослойки) в Подмосковье с общей площадью наружных стен 360 м кв. Для этого региона средняя минимальная наружная температура по справочнику составляет -20°C. Вставим в калькулятор следующие значения для каждого слоя (материал/ толщина в см/ коэффициент теплопроводности):
- бетон/ 20/ 2,1;
- пенобетон плотностью 1000 кг на м куб./ 30/ 0,47;
- пенополистирол/ 20/ 0,06.
В результате получим 3,9 кВт. Изменяя исходные параметры, можно сделать нужные корректировки.
Калькулятор для расчета тепловых потерь
Пользоваться специализированным программным обеспечением удобнее, чем последовательным вычислением с помощью формул. При выборе подходящего инструментария следует проверить используемую методику. Необходимо убедиться, что в исходных данных учитываются все значимые факторы. Полученное значение рекомендуется несколько увеличить, чтобы отопительное оборудование не работало с повышенными нагрузками.
Основные факторы теплопотерь
Чтобы точно рассчитать теплопотери дома, необходимо знать, что на них влияет. Учитывая факторы потерь, домовладелец сможет максимально точно определить искомую величину. Есть два основных показателя, от которых зависят размеры теплопотерь:
- Тепловые потери через домовое ограждение. Сюда входит учёт потерь через стены, пол, потолок, оконные и дверные проёмы.
- Затраты энергии на нагрев воздуха при вентиляции. Вычисляются расходы при открытии окон, дверей и вентиляционных каналов.
В этом видео вы увидите удобную программу для расчета теплопотерь и мощности котла:
Кроме основных величин, на конечный результат влияет:
- точное геодезическое положение дома;
- климатические условия местности;
- материалы, из которых построено здание.
Разновидности теплопотерь
Авторы многих статей сводят расчет теплопотерь к одному простому действию: предлагается умножить площадь отапливаемого помещения на 100 Вт. Единственное условие, которое при этом выдвигается, относится к высоте потолка — она должна составлять 2,5 м (при других значениях предлагается вводить поправочный коэффициент).
На самом деле такой расчет является настолько приблизительным, что полученные с его помощью цифры можно смело приравнивать к «взятым с потолка». Ведь на удельную величину теплопотерь влияет целый ряд факторов: материал ограждающих конструкций, наружная температура, площадь и тип остекления, кратность воздухообмена и пр.
Теплопотери дома
Более того, даже для домов с различной отапливаемой площадью при прочих равных условиях ее значение будет разным: в маленьком доме — больше, в большом — меньше. Так проявляется закон квадрата-куба.
Поэтому владельцу дома крайне важно освоить более точную методику определения теплопотерь. Такой навык позволит не только подобрать отопительное оборудование с оптимальной мощностью, но и оценить, к примеру, экономический эффект от утепления
В частности, можно будет понять, превзойдет ли срок службы теплоизолятора период его окупаемости.
Первое, что необходимо сделать исполнителю — разложить общие теплопотери на три составляющие:
- потери через ограждающие конструкции;
- обусловленные работой вентиляционной системы;
- связанные со сбросом нагретой воды в канализацию.
Рассмотрим каждую из разновидностей подробно.
Формула расчета теплопотерь частного дома
Суммарные тепловые потери вычисляются по формуле из основных и добавочных теплопотерь (с округлением до 10 Вт).
В формуле теплопотери используются следующие величины:
- К — коэффициент теплопередачи (таблица «К — коэффициент теплопередачи»);
- F — площадь стен (в м2);
- R — сопротивление теплопередаче (ккал/м2 х ч х °C);
- tв и tп — температура внутри и снаружи помещения;
- n — коэффициент уменьшения, учитывает теплопотери в зависимости от типа ограждений (таблица « n — коэффициент уменьшения»).
Значения R отличаются в зависимости от вида ограждающих конструкций (таблица « Значения R0 и 1/R0»).
Виды копчения
Крыша
Материалы из древесины, используемые при постройке дома
При постройке домов для возведения ограждающих конструкций и их облицовки используются различные деревянные изделия — это могут быть цельные бревна или изготавливаемые из них пиломатериалы – доски, брус, рейки и т.п.
Один из вариантов разделки бревна на строительные пиломатериалы
Чтобы иметь представление о том, какие деревянные материалы представлены на рынке, и в какой области строительства они применяются, далее будут рассмотрены их основные разновидности:
Возведение сруба из бревна ручной обработки
Бревно механической или ручной обработки является строительным материалом для возведения ограждающих несущих конструкций. Бревна, обработанные этими способами, более долговечны в незащищенных с фасада конструкциях, чем их оцилиндрованные аналоги, так как с них не снимается природный защитный слой, расположенный непосредственно под корой дерева. Но работать с такими бревнами сложнее, так как их «геометрия» может несколько «плясать» в ту или иную сторону.
Сруб из оцилиндрованного бревна
Оцилиндрованное бревно имеет идеальную геометрию, которая достигается путем специальной механической обработки. При проведении процесса оцилиндровки с изделия снимается несколько верхних слоев, что ослабляет защитные качества строительного материала. Поэтому такие изделия требуют обязательной пропитки антисептическими грунтовочными растворами. Этот материал имеет более эстетичный внешний вид и стоит дороже, чем бревна обычной обработки.
Калиброванное бревно – вся партия материала имеет совершенно одинаковый диаметр.
- Калиброванным бревнам в отличие от описанных выше изделий придается абсолютно одинаковый диаметр. Для возведения деревянного сруба дома для постоянного проживания калиброванное бревно должно иметь диаметр не менее 250 мм, иначе строение придется дополнительно утеплять. Очень часто после оцилиндровки на таких бревнах в заводских условиях сразу выбирается и продольный межвенцовый паз (как показано на иллюстрации выше).
- Массивный брус — эти пиломатериалы, обычно изготавливаемые из сердцевины бревна, могут иметь прямоугольное или квадратное сечение различных размеров. Массивный брус можно разделить на три подвида — это изделия естественной влажности обычного и профилированного сечения, а также профилированные, прошедшие просушку в специальных камерах.
На иллюстрации представлены три разновидности массивного бруса — не профилированный и профилированный естественной влажности, и прошедший специальную просушку профилированный вариант
Необработанный брус естественной влажности имеет ровные поверхности, а профилированные изделия — продольные пазы для удобства стыковки их при выведении стен. Строить сразу дом из этого материала нельзя, так как требуется время для его атмосферной просушки, во время которой древесина может растрескаться и деформироваться.
Непрофилированный брус может быть использован для возведения стен брусчатого строения или же для остова каркасного дома. Применяется он и в конструкции стропильной системы, в качестве мауэрлата, лежней, стоек и т.п.
Профилированный просушенный брус является оптимальным вариантом для возведения стен, но имеет более высокую стоимость.
Минимальный размер в сечении бруса, предназначенного для стен, должен быть не менее 150÷200 мм. В противном случае для обеспечения комфортности проживания в доме потребуется дополнительная термоизоляция.
Клееный профилированный брус
Клееный брус представляет собой сборную конструкцию, состоящую из 3÷5 досок склеенных между собой под давлением. Затем изделие обрабатывается и профилируется.
Эти изделия не деформируются и не растрескиваются на всю глубину, так как перед их склеиванием, доска проходит просушку в специальной камере, где достигается оптимальная влажность древесины.
Кроме этого, клееный брус, в отличие от массивного, может иметь весьма большой размер в сечении, благодаря чему можно выстроить стены, для которых не потребуется дополнительная термоизоляция. Но, правда, и стоимость клееного профилированного бруса может показаться пугающе высокой.
Изготовление сруба из лафета
Лафет — это пиломатериал, представляющий собой нечто среднее между брусом и бревном. Он изготавливается путем среза с массивного бревна двух боковых сторон. Таким образом, лафет можно назвать бревном с двумя плоскими боковыми поверхностями.
Лафет также можно приобрести в непросушенном или же уже в полностью подготовленном к строительству виде. Естественно, прошедший специальную сушку материал будет стоить гораздо дороже.
Самый ходовой материал на всех этапах строительства — доски
Доска — это пиломатериал, который может иметь стандартную длину, соразмерную бревну (обычно – 6 метров), толщину до 100 мм, и ширину, превышающую толщину в два и более раз.
Доски применяются при строительстве дома на всех этапах и в самых разных областях. Это стропильная система, балки перекрытия, лаги, обшивка каркасов, полов, перекрытий, изготовление вагонки для декоративной внешней и внутренней отделки. Очень широко используются доски и в качестве вспомогательных материалов.
Доска так же, как бревно и брус, может быть просушенной и обработанной или же иметь естественную влажность. Непросушенные доски могут использоваться только для подготовительных работ, например, при обустройстве опалубки для фундамента.